Course XXX-07

Using Visual InterDev and Visual FoxPro

By Whil Hentzen

Access to Data

Access to data on the Web works differently than in the traditional LAN-based
architecture that you’re used to. Let’s examine why, and then discuss the ramifications.

HTTP: An analogy

Unlike the LAN, where you are either extricably linked to the data (in a pessimistic
locking scenario) or a mere keystroke away (in an optimistic locking scenario), the
browser has no direct connection to the database.

This relationship is similar to a word processor that retrieves a file from a network. You
Open the .DOC file, and now it’s in memory on your own PC, regardless of where the
original. DOC file was. There isn’t a “live” or “continuous’ connection between the
words you’re editing and the file on disk. You need to execute a File Save in order make
the connection again.

And during the File|Save, what happens is that you are actually creating a brand new
connection. You can prove this because if you took out your handy wire cutters, you
could be working on the .DOC in your PC’s memory, and have a pal snip the wire
between your PC and the rest of the network. You might not notice until you went to save
—you’d then find out that your connection to the network was gone.

Same thing with the Web — your connection is temporary — lasting only long enough to
grab the goodies and get out. Let’s be more specific:

1. The browser (the “client”) sends a request to the web server. This is analogous to
executing File Open in our word processor.

2. The web server (a piece of software such as IIS running on a separate box) recieves
the request, and goes to fetch the data as described in the request.

3. This data may be on the same box, in a simple format like a set of DBFs or an MDB,
or it may be on yet another separate box — the database server. In either case, the data
is returned to the web server.

4. The web server returns the data to the client (browser), and the connection is broken.

5. The browser gets a file/chunk of data from the server, and displays it for the user, just
as Word can display the contents of a .DOC file in a pleasing format for the user.

Obviously, you’re going to through a paradigm shift when it comes to providing access to
data on the Web. What are the ramifications?

1. You’ll be working with set-based data sets instead of the whole enchilada.

2. The interface capabilities are significantly more limited than what you’re using to in
VFP.

3. HTTP protocol is disconnected so you don’t have the same performance capabilities.

Set based data sets

The Web is very much a client-server mechanism, and the connection can be very
tenuous at times. Even more so than a traditional client-server relationship, you want to
minimize traffic over the wire. Get used to working with one or a few records, as opposed
to being able to SKIP or BROWSE through a couple hundred thousand records (and their
myriad relatives.)

Limited interface capabilities

During the early 1990’s, we bemoaned the limitations of the FoxPro 1.0 and 2.x user
interfaces — a minimal number of events and limited control over what the user was doing
and what you were able to control. A far cry from the incessant READs of dBASE and
FoxBASE interfaces, to be sure, but we spent an incredible amount of time devising
workarounds. With the form designer tools of VFP (and similar tools like VB), a whole
new world opened up to us: extremely granular control over every aspect of the interface.

As they said in the movie Mad Max Beyond Thunderdome, “No matter where you go,
there you are.” And here we are, back where we were. While accelerating, the capabiltiies
of today’s browsers simply don’t match what we have on the desktop with our other
tools. Many have compared them to dBASE III or FoxBASE. I won’t argue where we
stand on the ladder of evolution — but we’ve taken a few steps back for the time being.

HTPP protocol

You’ll have to rework your data access mindset and strategies, being more careful about
what you’re asking for and when. With VFP’s blinding speed, you could get away with
being lazy — don’t have the right data? Just grab another batch through a SQL SELECT.
Don’t know what you want? No matter — grab as much as you want, and then winnow
down the result set later.

You’ll approach your data differently now.

Plumbing

Data access architecture

Tools available in Visual InterDev

Database projects. A project that includes tools to build and manage your databases
separately from the rest of your Web pages. Included as a component of a Visual
InterDev solution.

Data View window. Provides a live view of the data to which you’re currently connected.

Visual Database Tools. Tools that allow the management and querying of a database
graphically. Database Designer handles SQL Server and Oracle databases; Query
Designer creates SQL statements; View Designer creates Views.

Data Environment. Connection strings are descriptions of how to connect to a specific
database. Data commands represent specific record sets that you’ll view in your Web
page. Most useful for VFP developers accessing DBF-based data.

Data-bound controls. Controls put on a Web page that are automatically bound to fields
in a database record.

Source control for database objects.

Production site requirements
What you need and where you can get it.

First, start off with a clean machine — all the way down to formatting the drive and
installing everything from scratch. It’s simply too easy for remnants of something that
was supposed to have been completely uninstalled to be left around and cause trouble
when you least expect it.

Second, install NT Server 4.0. Internet Information Server 2.0 comes with NT Server.

Third, install Service Pack 3 for NT 4.0. This includes IIS 3.0. SP3 is available for
download at www.microsoft.com, among other places. (Of course, you need NT 4.0 to
use it.) You’ll now see Programs/Microsoft Internet Server (Common) on the Start menu.

Fourth, Visual Studio Enterprise 6. You can get SP3 and IE4 from this package as well.
Then you are asked which type you want to install: Custom, Products or Server
Applications. Select Server. This will install a number of items, including NT Option
Pack 4.0, Front Page Server Extensions, Visual FoxPro Server, Visual InterDev Server,
and MS Data Access Components.

NT Option Pack includes updates to some components, including from IIS3 to I11S4.

You’ll now see Programs/Windows NT 4.0 Option Pack/Microsoft Internet Information

Server/Internet Service Manager, which brings up Microsoft Management Console
(MMO).

http://www.microsoft.com/

Development software - Server

Same as Production Server

Development software - Workstation

Now let’s look at what you’ll want to do for your workstation.

First, again, start off with a clean machine. This is probably more important since you’re
more likely to have installed something goofy on a workstation. It’s also more of a
nuisance, again, because you’re more likely to have a ton of things already installed.

Install Windows NT Workstation 4.0, and Service Pack 3 for NT 4.0.

Install Visual Studio Enterprise, Custom. You’ll want to select Internet Explorer 4.0 as
well as Visual FoxPro and Visual InterDev.

You’ll also want to install MSDN — comes with Visual Studio — be sure to have several
gigabytes free, because you’ll want to install the whole thing.

Hints

Use a server-workstation network setup. You can play around with everything on a single
machine, but for actual development, you’ll want to use a local and a master.

Start with a clean install. FDISK is your best friend when preventing problems from the
get-go.

Mentally get ready to install more than once. Get all of your files ready, and keep them in
a single place. You probably won’t need to, but better to be prepared.

Document what you do, what happens, and what you’ve accomplished. It’s very easy to
install something the third or fourth time, and not realize that you forgot Step 7. Be
particularly sure you document which version of a tool you’re installing.

What is Visual InterDev?
Visual InterDev is to an HTML editor as what Visual FoxPro is to EDLIN.
From the documentation:

“Visual InterDev is a Web development tool designed for programmers and Web teams
who want to create:

e Data-driven Web applications using any data source supported by ODBC or OLE
DB. This covers all the databases from major vendors, including Microsoft,
Oracle, Informix, and Sybase.

e Broad-reach Web pages using HTML and script in Web applications that take
advantage of the latest advances in browser technology such as Microsoft®
Internet Explorer 4.0, Dynamic HTML and multimedia features.

e Integrated solutions that can include applets or server-side COM components
created in Microsoft Visual Basic®, Visual C++®, Visual J++™ and Visual
FoxPro®.

Just as FoxPro has provided a complete environment for building LAN applications for
the past decade, with a project manager, tools to build forms, menus, and reports, and
then allowed the user to package a deliverable, Visual InterDev does the same — and more
— for high-end data-driven Web applications.

But there’s more. In addition to providing a project manager that connects an HTML
editor, data connections, and COM components, Visual InterDev also does a great job
coordinating the work of multiple developers, and delivering finished applications to a
production server.

The Visual InterDev Interface and Tools

Toolbox. Three views accessed via tabs in the bottom of the window. Document Outline
displays a map of the documents in the project. Toolbox contains five areas: General,
HTML, Design-Time Controls, ActiveX Controls, and Server Objects. Script Outline .

Project Explorer. Similar in purpose to the Project Manager in VFP. Displays a
hierarchical listing of all components of a solution/project.

Property Window. Similar in purpose to the Properties Window in VFP. Displays a list of
properties for the currently selected component.

HTML Editor. Three views: Design, Source, and Quick View.

Visual InterDev Structure

This entire discussion is predicated on the assumption that you’ll be working on a
workstation, that your workstation is connected to a server; and both are running the
appropriate Visual InterDev components.

Application Hierarchy

A Visual InterDev application is called a solution, which may be made up of one or more
projects. For our purposes, we’ll be talking about a single project for the remainder of
this discussion.

A project consists of, on the top level, a default page (either HTML or ASP), a
GLOBAL.ASA file, and a SEARCH.HTM file. A number of directories are also
automatically created for a Visual InterDev project, depending on which options are
selected. These include private, _scriptlibrary and images.

Plumbing

The server maintains a master copy of the entire solution. When you open the project on
your local workstation, you download a copy of the entire set of files to your workstation.
Thus, you are working on a mirror image of the entire project. Other developers can also
download the project to their workstation, and work on their own local version
independently.

When you finish, you send your changes back to the server, which then incorporates
changes into the master project and reconciles changes as needed.

Thus, components of Visual InterDev are installed both on the Server and on the
Workstation. You’ll also want other development tools installed on your workstation as
you need them. For example, you may want Visual FoxPro, Visual Basic and Visual C++
to build components.

There are, as of this writing, some issues about where the actual database is located. You
may find it useful to keep identical copies of the database in the same fixed path both on
the server and on the workstation during development. More on this when we talk about
connection strings.

Creating a Project

In order to create a new Visual InterDev project, start up both the Server and the
workstation, and making sure the Web Server is running on the server.

Visual InterDev will create a series of files on your server under the Web Server’s home
directory. You can specify location this by turning to your server, selecting Start,
Programs, Windows NT 4.0 Option Pack, Microsoft Internet Information Server, Internet
Service Manager to bring up the Microsoft Management Console (MMC — learn this
acronym well!). In the left pane tree view, you can drill down from Console Root,
Internet Information Server, <name of your server>, Default Web Site, and right-click on
Default Web Site. Select the Properties menu option, and then the Home Directory tab. If
you’ve chosen the first radio button (content should come from a directory located on this
computer), you can type in or browse a local path to select a directory or subdirectory.
This will be the “root” of the Web Server, and all files will be located here.

[Note: Later on, when retrieving a page from the web server, you’ll use this location as
the starting point, simply prefixing the page name with the name of the server. For
example, suppose your web server (machine) name is HERMAN, you’ve specified the
D:\APPS\WEBSTUFF as the local path, and the page you want to access is called
IT.HTML. You would place IT HTML in the WEBSTUFF subdirectory. Then, in your
browser on your workstation, you’d enter the URL: http:/HERMAN/IT.HTML. The web
server’s home directory setting knows that IT_HTML is in D:\\APPS\WEBSTUFF.]

Starting up a new project
Bring up Visual InterDev, and select the File, New Project menu option.

The New Project Wizard displays, asking you if you’d like a Visual Studio or Visual
InterDev project, and if you’ve selected the Visual InterDev project icon, whether you’d
like a New Web Project or the Sample App Wizard. Select the New Web Project icon. A
name for the project will be displayed along with a location.

[Note: I’ve found it much less confusing to keep a directory structure on the local
workstation that is identical to the web server machine.]

Rename the project if desired, and select the Open button. Now the fun begins. The Web
Project Wizard displays, and asks for the server that you’d like to use.

Where is that server?

One of the most annoying events in this whole process is when you can’t find your
server. While not exhaustive, here are a few possible situations you might find yourself
in.

First, if you type in the wrong name, you’ll get a grey dialog box “Contacting Web
server...” and eventually, a message box stating “Unable to contact web server
http://name. You’ll get an OK button; resist the temptation to say, “NO! It’s NOT OK”
because doing so won’t do any good. You can find the name of your server by looking in
the MMC tree view, and seeing what the name of the server is under the Internet
Information Server node.

http://name/
http://HERMAN/IT.HTML

A second possibility is that you don’t have Front Page Server Extensions installed. In this
case, you’ll swear that you’re entering the right server name, but Visual InterDev still
isn’t finding it.

To install Front Page Server Extensions, bring up Program Files\Windows NT 4.0 Option
Pack\Microsoft Internet Information Server\FrontPage Server Adminstrator, then select
button in upper left corner and install them.

A third possibility is that you don’t have sharing set up properly. Right-click on the
directory you’ve specified as your Web Server Home Directory and make sure that Web
Sharing is enabled.

A fourth possibility is simply that your network isn’t set up properly, or that you simply
haven’t rebooted everything after changing settings.

The other question you’ll have to answer is which mode you want to work in — Master or
Local. Master mode means that you’ll be working on a local set of files, but Visual
InterDev will automatically keep the files in sync.

The second step is to decide whether you want to create a new Web application or to
connect to an existing application. In this case, you’ll create a new application.

The third and fourth steps are to select a theme and a layout — both are optional, and you
may want to bypass these for your first few projects, as they are additional, time-
consuming steps.

Finally, you’ll select Finish, and you’ll see a series of messages indicating that the project
is being created. You’ll also see a list of files in the Project Explorer window grow. What
is happening is an entire project shell is being copied to the server’s Home Directory.

Finally, you’ll want to create a home page. Right-click on the server name/project name
node in the Project Explorer window project tree view, select Add..., and then identify
the type of object you want to add —an HTML page, an ASP page, or whatever. Name
the page, and it will open an HTML editor window. You can identify this page as the
start page by right-clicking on it’s node in the Project Explorer window tree view, and
selecting the Set As Start Page menu option.

Select File, Save All (unless you’re brave or foolhardy), and you’ve now got a brand new
project ready to work on.

Connecting to Data

First things first. You gotta have some data. We’re going to use a stand-alone Visual
FoxPro table to begin with, in order to show what the procedure is and how the
mechanism works. We’ll make it more complex later. We’ve got a single .DBF in the
Home Directory both on the local machine and on the web server. We need it on the local
machine in order to create a connection string, and on the server because that’s where the
web server is going to look for it when you request the page.

The first thing we’re going to do is create a mechanism for Visual InterDev and our web
application to be able to identify the database and determine how to connect to it.

Creating a DSN

First, you’ll need to create a Data Source Name (DSN) that identifies how to connect to
the database. (You’ll see a number of existing DSNs when you create Connection Strings
later — don’t use them! They’re there for other applications (like Office) to use. You’ll
need to use your own!)

Use Control Panel / ODBC and create a File DSN and point to the database that you’re
interested in. This DSN will be saved in Program Files/Common Files/ODBC/System
Files. Remember that this DSN points to a specific database in a specific location. If you
move it, you’ll need a new DSN!

In the Control Panel, select the ODBC applet, and go to the File DSN tab.

Press the Add button, select the driver from Create New Data Source dialog, note the
difference between FoxPro Driver and Visual FoxPro Driver, then Browse to the name of
the DSN — NOT THE DBEF. I think the wording in the dialog is confusing. You are
creating a DSN in Program Files\Common Files\ODBC\... Then Finish.

Next, you’ll get a ODBC Microsoft FoxPro Setup dialog. Use this to select the directory
your DBF is in. You’re back at ODBC ... Administrator. Click OK.

A DSN is simply a text file — you can open it up in Notepad and take a look at it if you
desire.

The DSN contains properties that we’re going to use in our Connection String, which can
be thought of as a variable in Visual InterDev. This variable contains the location to the
database, and the web application hands this to the web server to tell it where to find the
data.

Creating a Data Connection object

Add a Data Connection by right-clicking on the GLOBAL.ASA file in the Project
Explorer window and selecting Add Data Connection.

You’ll get a Select Data Source dialog with two tabs. The first tab says “File Data
Source” and voila! You should see your DSN you just created in the list. Pick it!

Next, you’ll get a Connectionl Properties dialog. The Connection Name text box has
“Connectionl” in it, and the Use Connection String option button is selected. You’ll see
the driver for the File DSN you selected in the previous step.

You can rename the connection string to something else if you like — I usually use a name
that matches up to the project name. Press the Test Connection button, just to be sure, and
then Apply and OK.

Now the Connection String is part of the Visual InterDev project, so the Web application
knows where the data is, and how to connect to it. As a point of interest, the DSN from
which the Connection String was created is no longer of any interest. You could actually
even delete the .DSN file from Program Files/Common Files/fODBC/System Files (using
Control Panel, of course) if you wanted to.

Note that if you used a System or Machine DSN, the application would be bound to the
DSN, and thus, you would have to recreate the DSN on every development machine
working on the application — and the Web Server machine itself.

Also note that you can have multiple data connections — if you need to attach to multiple
data stores, you can add a data connection for each of them.

Creating a Data Command

A data command is a reusable object that defines a set of data to work with. This set of
data may be represented by a table, a query, or a view, for example.

Your blank ASP page, created earlier, should look something like this when you view the
HTML source (if you’re in the Design tab or Quick View tab in the HTML editor, well, it
would be pretty uninteresting):

<%@ LANGUAGE=VBScript %>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
</HEAD>

<BODY>

<P> </P>

</BODY>
</HTML>

Put your cursor in between the BODY and /BODY tags. Then open the Design-Time
Controls tab in the Toolbox, and double-click on RecordSet. You’ll be prompted as to
whether or not you want to enable the Object Model, and by gum, you sure do. The
RecordSet control will be placed on the page. It will be named “DTCRecordset1.”

Now set the properties for this Data Command. Set the Connection to the connection you
created earlier, the Database object to Tables, and the object name to the name of the
table you have selected. Close the properties window.

Placing data objects on page

Now add a couple of controls, say, a text box and a check box. To do so, place your
cursor under the Recordset control, and then double-click on the text box and check box
controls in the Toolbox. You’ll get one of each.

Set the properties for these controls. First, make sure that the recordset is set to
DTCRecordset]l. Map the text box to a character field in the table and map the check box
to a logical field in the table.

Running

Save and preview in your browser. The first record in your dataset will be displayed.

Manipulating Data

Navigating through existing data

One of Visual InterDev’s controls is a RecordsetNavBar control that provides the ability
to move from record to record in the recordset. To use it, place your cursor in the page
where you want to NavBar control to appear, and then double-click on the
RecordsetNavBar control in the Toolbox. Then set the Recordset property of the control
to the Recordset used earlier.

Native Editing/Adding/Deleting

Automatic updates based on navigation

Simply set the RecordsetNavBar updateOnMove property to True. Note that this
essentially does a save regardless of whether the data was changed, which may cause
unwanted overhead.

Adding

First, you’ll add a button to the page, such as “Add.” Then you’ll initialize a new record
in the click event of the button. At this point, the user can enter data as they desire.
Finally, in order to save, the user will press a Save button, and run the same process that
they do when saving an edited record.

Deleting

First, you’ll add a button to the page, such as “Delete.” Then call the recordset’s delete
method to eliminate the current record. The next record in the recordset will be shown by
default.

Editing/Adding/Deleting options with script

The Script Outline tab in the Toolbox allows access to a variety of controls and their
methods. Double-clicking on a method places a blank subroutine in the HTML editor for
you to enter your own custom script.

Forcing updates through script

Forcing updates manually requires the use of script in methods attached to the recordset
object. First, you'll call the setValue method in order to copy data values into the current
record — for every field, similar to when you used to SCATTER/GATHER on a field by
field basis. Then you’ll call the updateRecord method in order to save the current record
to the database.

Sub btnSave_onclick
rsUsers.fields.setValue (“"FirstName”, txtFirstName.value)
rsUsers.fields.setValue (“"LastName”, txtLastName.value)

rsUsers.fields.setValue (“OrgName”, txtOrgName.value)

rsUsers.fields.setValue (“LastUpdated”, date)
rsUsers.updateRecord

End sub

Adding records

In the click method of the Add button, you can call the recordset’s addRecord to add a
new blank record in the recordset. Then, initialize the fields on the form. For example:

Sub btnAdd_onclick
rsUsers.addRecord
rsUsers.fields.setValue (“LastName”, “”)
rsUsers.fields.setValue (“OrgName”, “”)
rsUsers.updateRecord

End sub

Note that we haven’t populated the LastUpdated field with a value. This is because the
Save method will do that for us. All we’re doing is essentially SCATTER MEMVAR
BLANK.

Deleting records
The code for deleting a record, and then moving to the next record, looks like this:
Sub btnDelete_onclick

rsUsers.deleteRecord

End sub

Note that there is no code to move to the next record. This is native behavior. You could
force the positioning of the record pointer by inserting code to do so. For example,

DTCRecordsetl.deleteRecord;

DTCRecordsetl .movePrevious;

	Course XXX-07
	Using Visual InterDev and Visual FoxPro
	By Whil Hentzen
	Access to Data
	HTTP: An analogy
	Set based data sets
	Limited interface capabilities
	HTPP protocol

	Plumbing
	Data access architecture
	Tools available in Visual InterDev

	Production site requirements
	Development software - Server
	Development software - Workstation
	Hints

	What is Visual InterDev?
	The Visual InterDev Interface and Tools
	Visual InterDev Structure
	Application Hierarchy
	Plumbing

	Creating a Project
	Starting up a new project
	Where is that server?

	Connecting to Data
	Creating a DSN
	Creating a Data Connection object
	Creating a Data Command
	Placing data objects on page
	Running

	Manipulating Data
	Navigating through existing data
	Native Editing/Adding/Deleting
	Automatic updates based on navigation
	Adding
	Deleting

	Editing/Adding/Deleting options with script
	Forcing updates through script
	Adding records
	Deleting records

