
http://www.pinpub.com 1FoxTalk Extended Article: January 1999

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

This is an exclusive supplement for
FoxTalk subscribers. For more

information about FoxTalk, call us at
1-800-788-1900 or visit our Web

site at www.pinpub.com/foxtalk.

Extended Ar ticle

Visual Basic for Dataheads:
A New Beginning
Whil Hentzen

LET’S face it. You’re going to have to learn Visual
Basic one of these days. It’s not because “they’re
going to kill Visual FoxPro”—far from it.

It’s not because Visual Basic is “better” than
Visual FoxPro. It’s a general-purpose programming
language with its own strengths and weaknesses. Fox
is a data-centric programming language, again, with its
strengths and weaknesses. Each does some things well
and other things, er, poorly. “Better” is truly in the eyes
of the developer.

And it’s not because I’ve gone bonkers. That
happened long ago.

There are three reasons. First, you might think I’m
lying about the future of VFP and figure it’s safe to cover
your bases. Well, I’m not lying—just like any dutiful
Microsoft shill, I’m simply repeating what I’m told to. <g>
But not putting all of your eggs in the same basket is
probably a good idea, regardless. Ever really wonder why
we’re still saddled with a Report Writer and Menu Builder
from 1992, and there are no plans for updates? Maybe it is
time to look elsewhere for those components!

Second, “everybody” has it. And you want to be
popular, don’t you? <g> How many of you preferred
another word processor or spreadsheet but gave up
because every document you received was in Word 6.0
format, and you got tired of converting—and having
pieces lost in the process? It was just easier to go with the
tide—and, besides, you probably got a copy of it free from
somewhere or another.

As a result of everyone having VB, when you see
sample source code, it’s often in VB (or VBA). Wouldn’t it
be nice if you had a better familiarity with the language so
you understood what “DIMs” and “VARIANTs” were,
instead of having to guess?

The last reason is that, as alluded to earlier, there

are some things that Visual FoxPro just doesn’t do
very well. For example, I’ve been wrestling with the
integration of a high-end imaging ActiveX control in
VFP. It’s been an ugly road, and, as I’m writing this, it
looks like the road is a dead-end. The customer isn’t
really very interested in hearing about “the differences
between VFP’s and VB’s containership and hosting
abilities” (there’s the one guy in their IS department
who’s muttering, “I knew we should have written this
in VB”). They just want it to work.

Why spend hours and days working around a
weakness when another tool can be used that doesn’t
have that weakness? How about, as Dan Freeman
suggested, “building an OCX in VB? Just wrap it around
the recalcitrant control. The control will think it’s hosted
in VB, and Fox seems to work better with VB controls.”

And, if you’ve been following John Petersen’s
column, you’ve seen the differences between VFP and VB
in talking to ADO—VFP just doesn’t cut it in some places.
Why not plug a VB module in to take up the slack?

Well, if you go that route—and I think it’s one worth
considering—you’ll need to get up to speed with VB.
While that’s not a significant challenge (hey, there are only
something like 19 keywords in the entire language <g>), it
could still be a longer process than you have time for. You
could pick up one of those “Learn VB in 21 Days”
books—you know, one that sits next to the 2,000-page
“Write Your Own NT Kernel in 24 Hours” book (I swear—
I saw one of these books!). But those are written to be as
generic as possible—aimed at everyone from the
experienced VB5 developer to the novice who still hasn’t
gotten the hang of the mouse.

What I’m going to do in this column over the next
year is tackle VB from a Fox developer’s point of view,
pointing out similarities and differences—what to look at,

2 http://www.pinpub.comFoxTalk Extended Article: January 1999

what to ignore. And, most
importantly, I’m going to provide
a very fast path to getting up to
speed, because I know what your
background is—so, unlike those
general-purpose books, I don’t
have to write for a wide range of
developers in the audience.

This month, I’m going to
introduce you to the VB IDE—it’s a
little different from the sparse
Command Window that we’re used
to. Actually, it’s a lot different.

Lesson 1: The Visual Basic IDE
I’m assuming you’ve installed Visual
Basic 6.0 that comes with the Visual
Studio 6.0 package, and for the time
being, it doesn’t matter whether
you have the Professional or
Enterprise version. You can also get
VB in some other versions—Training,
Standard, and Mega-Galactica, but
I’ll ignore those. When you load VB,
it will present you with a dialog box
that asks you what type of project
you want to create. I checked the
“Don’t show this dialog box ever,
ever, ever, ever again” check box
because when you create a new
project from the File, New Project
menu command, you’ll get access to
the same dialog box.

MDI vs. SDI
Once VB loads, you’ll see an MDI
window filled with windows, much
like Visual InterDev (see Figure 1).
This might startle some of you who
have seen previous versions of VB—
those used an SDI interface, which
was rather disconcerting to us Fox
developers; the windows just sat on
the desktop, and you could see the
desktop showing through the holes.
(You can turn SDI on if you like
through the Tools, Options,
Advanced tab.) See Figure 2.

Figure 1. VB 6.0 sports an MDI interface by default.

Figure 2. Use the Tools, Options, Advanced tab to change VB 6.0’s interface to SDI—if you
can stomach the mess!

What are all these windows?
What are all of these windows? On the left side is a long,
narrow window with about a dozen controls in it—that’s
your Controls toolbar, just like Fox. If you let your mouse
icon hover over a control, you’ll get a ToolTip describing
the control, just like every other Microsoft product on the

planet. (I was going to say “Windows product” but
figured it’s pretty close to the same thing.) The bar across
the top that’s captioned “General” is called a tab, even
though you and I think it looks like a “bar.” Hmmph,
those VB guys . . . However, the toolbar can contain lots of
controls, and I mean lots—the native controls that come
with VBE (Visual Basic Enterprise) number close to 125.

http://www.pinpub.com 3FoxTalk Extended Article: January 1999

However, instead of segregating
controls into different toolbars like
Fox does (Standard, ActiveX, and
your own libraries), you can separate
the Controls toolbar by adding tabs
to the toolbar, each of which will
contain a certain type (see Figure 3).

VB uses a project metaphor to
build applications just like Fox, and
it’s heavily dependent on forms,
again, just like Fox. When you create
a new project (either through the
New Project startup dialog box or the
File, New Project menu command),
you’ll be faced with a plethora of
options. Pick Standard EXE for the
time being, and you’ll get a project
named Project1 in the upper right-
hand window that originally didn’t
have a caption in the title bar. This,
then, is the Project Explorer.

Underneath the Project Explorer
is the Properties window, and it
provides the same function as our

Figure 3. Right-click on the General tab in the Controls toolbar to add, edit, delete, and
manipulate tabs.

Figure 4. The Fox Still Rocks form in, er, action.

VFP—it’s an SDI form automatically.
Okay, “How do I stop this thing?” You can click on

the close box of the form, or press the ever-so-intuitive
Alt-F4, or just click on the toolbar button with the square
box (two buttons to the right of the Start toolbar button).

Adding code to a form
I know that example is less involved than the typical
“Hello World” program you first write in C, but, hey, this
is BASIC. Let’s put some code in this form.

Code windows are one significant departure in
behavior from “the Fox way.” First, in order to get to
them, you can’t use the Properties window. It’s for
properties, after all. It doesn’t say “Properties and Code
Window,” does it?

own Properties window, although the functionality is a bit
different. You’ll already see that you can sort the
properties alphabetically or by category—Appearance,
Behavior, Font, Misc, and so on. I’ve kept the properties
sorted alphabetically because it’s hard enough keeping
track of which properties belong to VFP and which to
VB—and what the minute differences are. Trying to
remember whether “Visible” is an Appearance property
or a Behavior property is just too hard. You’ll see I’ve
already changed the caption of Form1 to something more
aesthetically pleasing—and I didn’t even have to read the
manual to find out how!

New to you is the Form Layout window in the lower
right—it shows you a bird’s-eye view of what the form is
going to look like on the desktop. As you resize a form,
you’ll see the corresponding view in the Form Layout
window change as well.

Your first VB form
The form that’s created when you create a project is
named “Form1” by default. By itself, it isn’t very
interesting, but you can run it just as you can run an
empty VFP form. In order to do so, you can click on the
Start button in the Standard VB toolbar (it’s the button
with the arrowhead pointing to the right, under the “m”
in the Diagram menu if you’ve got both the menu and
Standard toolbar docked and nudged up to the left).
Alternatively, you can issue the Run, Start menu
command or simply press F5 (see Figure 4).

You know what’s cool? If you task-switch with Alt-
Tab, you’ll see that the VB form isn’t running inside like

4 http://www.pinpub.comFoxTalk Extended Article: January 1999

To open up the code window, you again have nine
thousand ways of doing so. You can highlight an object in
the Project Explorer and click on the View Code button in
the project, as shown in Figure 5.

You can also issue the View, Code menu command,
but the easiest way is to just double-click on the form.
After any of these operations, the code window displays
as shown in Figure 6. The left dropdown shows the
various objects of the form, including “General” (I’ll get to
that later), “Form,” and every control on the form. The
right dropdown contains all of the events into which you

Figure 5. The left button in the Project
Explorer toolbar opens a code window.

Figure 6. The VB code window with a command in Code Completion mode.

Figure 7. Press the Method View button next to the horizontal scroll bar in a code
window to see all of the procedures in the same window.

can stuff code—and you’re familiar
with many of these, such as Activate,
Load, Resize, and Unload.

In Figure 6, I got ahead of
myself and started writing some
code. Just when you got used to
typing “MessageBox” in VFP, VB
comes along and uses “MsgBox” to
perform the same function. You’ll
notice in Figure 6 that VB has “Code
Completion”—a ToolTip will display
prompting you regarding the
parameters that can be used with
the function you’re typing.

You’ll also see that code for a
particular procedure is bracketed by
“Private Sub <name>” and “End
Sub” statements, just like we use
FUNC and ENDFUNC in Fox. “Sub”
is a holdover from the olden days
when programmers used to write
“subroutines,” and VB puts them in
for you automatically. If you delete
one of those lines, “unexpected
results may occur.”

I suppose I could have put a
message box in the form’s Click
method, but that would have been
going from the excruciatingly trivial
to the nearly excruciatingly trivial.
Instead, I added a command button
from the Controls toolbar, double-
clicked on it, and entered the MsgBox
in there. Obviously, running the form
will generate a form with a command
button on it, and clicking on it will
display a message box.

The VB code window
But let’s talk about the code window
for a minute, because there are some
new things showing up. In Figure 7,
I’ve shown the code window with
pieces from several methods. As you

can imagine,
this is pretty
handy—being
able to see code
for more than
one procedure
in the same
window (as
long as those
procedures are
small).

http://www.pinpub.com 5FoxTalk Extended Article: January 1999

Notice two buttons to the left of the horizontal scroll
bar in the bottom of the code window. The right button is
selected in Figure 7 and indicates that you want to see
more than one procedure at a time. This button is called
the “Method View” button. The left button, Procedure
View, limits the display to one procedure at a time.

Saving and printing projects
A project is a file on disk, just like in Fox, but data in it
isn’t automatically saved like that in a PJX, so you have to
do it yourself. However, when you save a project, it will
prompt you to save all of the unsaved components, and if
they’re unnamed, you’ll be prompted to name them along
the way.

You can also print the contents of a project simply
by selecting the File, Print menu. The Print dialog box
contains a number of options that correspond directly to
VB projects (see Figure 8).

Project components and files
Before I wrap up this month, I want to mention what the
structure of a project looks like and what the files on disk
are. The project is stored with a “.VBP” extension and is
simply a text file. A VB form is also just a text file, with an

Figure 8. You can customize which parts of a VB project print.

Figure 9. VB projects and forms are simply text files.

Stupid VB Tricks
You know how there are certain behaviors in VFP that just

don’t seem right? The ones that make you ask yourself, “What

were they thinking?” And when the explanation offered is, “It’s

that way by design,” you just roll your eyes. Take heart; VB has

its share of incredulous behaviors. Each month, I’ll point out a

couple of gotchas that could bite you when you’re not

expecting it.

Stupid VB trick #1
Add a command button to the form, double-click to open up

the code snippet for that button’s click event, and enter some

code. Then delete the button. The code snippet stays put—it’s

not deleted.

Stupid VB trick #2
Add a command button to a form. Double-click to open up

the code snippet for that button’s click event, and enter some

code. Change the name of the button from “Command1” to

“MyButton.” The code snippet for “Command1” stays there—

with the code you entered. Meanwhile, running the form and

clicking on MyButton won’t do anything, because the code is

still attached to Command1 (even though it’s nonexistent),

not MyButton.

Stupid VB trick #3
Repeat the steps in #2, but then add another command

button. It will be named Command1—and the previously

orphaned code will now be attached to the new button!

5FoxTalk Extended Article: January 1999

extension of “.FRM.” I’ve shown both of these opened up
on Notepad windows in Figure 9. A third type of
component that I haven’t discussed yet, but that you’ve
probably seen here or there, is the Module. It has an
extension of .BAS, and it contains code that isn’t tied to a
form—much like a separate FoxPro procedure file.

There you go. I’ve been through six or eight VB 6.0
books, and they’ve each taken 40 to 50 pages to cover this
material. You now know more than what readers of those

6 http://www.pinpub.comFoxTalk Extended Article: January 1999

books do, and you’re probably not done with that can of
Jolt. Not bad, eh? Repeat after me: “Thank you, thank
you, Sam-I-Am, I like VB6, Sam-I-Am!”

I’ve been pretty flip about the use of some
terminology—events, methods, procedures, code

snippets, windows, and so on. Next month, I’ll tighten
up on the lingo and cover the big commands and
functions in VB 6.0. Stay tuned! ▲

Whil Hentzen is the editor of FoxTalk.

