
http://www.pinpub.com 1FoxTalk Extended Article: February 1999

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

This is an exclusive supplement for
FoxTalk subscribers. For more

information about FoxTalk, call us at
1-800-788-1900 or visit our Web

site at www.pinpub.com/foxtalk.

Extended Ar ticle

Visual Basic for Dataheads

The Basics of Writing Code
Whil Hentzen

This month, I’ll cover more details on the Visual Basic 6.0 IDE,
tighten up on the terminology for various parts of the IDE,
and discuss how code is constructed and scoped.

LAST month, after some hemming and hawing about
why I was covering the dreaded “Visual Basic” in
FoxTalk, I introduced the VB IDE and showed you

how to write and compile your first VB program. Now
it’s time to delve deeper into the tools you’ll use every
day in VB.

The Properties Window,
Property Pages, and Toolbars
If you open the VB Properties Window, you’ll see a drop-
down list box just like in VFP—it’s called the “object box”
and, like VFP, contains a list of all of the objects in the
currently selected form. However, if you pop it open,
you’ll notice that all of the objects on the form, as well as
the form itself, are listed in alphabetical order—and
there’s no apparent hierarchy involved. I’ll discuss this in
more detail in the next section.

The Properties Window works like VFP’s: Select an
object, and the associated properties and their values
show up in the list box below. The two tabs above the list
box allow you to choose whether you want to see the
properties in alphabetic order or by category.

If you select the Categorized tab, you’ll see a third
column appear on the left side of the list box—a series of
plus and/or minus signs that allow you to expand or
contract the list of properties for that category. I’ll
probably get around to describing a bunch of “tips and
tricks” for various control properties later, but here’s one
that you’ll likely want right away. In VFP, you use the
“\<“ character string in a command button’s caption to
set the next character to act as a hot key; in VB, you use

the ampersand (&) character. Thus, VB would use the text
string “&Done” to accomplish the same task as the VFP
caption “\<Done”.

Here’s another difference between VB and VFP.
Right-clicking on a form displays a context menu with a
Properties menu command, and selecting the Properties
menu command will open the Properties Window; but
right-clicking on a control in a form and selecting the
Properties menu command will bring up a “Property
Page.” This Property Page contains a tabbed dialog box
that contains various physical or visible attributes of the
control. More on this later.

Visual Basic’s control toolbar is called the “Toolbox,”
and, as we saw last month, you can customize it by
adding non-default Microsoft or third-party controls to
it. First, select (or create) the tab (the gray object that you
and I would have called a “bar”) under which you want
to add the control. (Remember that you can add a new
tab by right-clicking in the Toolbox and selecting the Add
Tab menu command.) Next, right-click under the tab,
select the Components menu command, and use the
resulting dialog box to select the control you want to
show on the Toolbox.

Finally, remember that the Properties Window only
shows properties—not methods or events. I’ll discuss
those shortly when I get to programming.

VB’s version of containership
Earlier in this article I mentioned that there’s no
hierarchical display of objects in the Properties Window
object box. This is because VB doesn’t have the same type
of containership as there is in VFP—and, while confusing,
this actually makes life easier in some cases. For instance,
if you put a check box on page two of a page frame in
VFP, you use the following code to reference its caption:

2 http://www.pinpub.comFoxTalk Extended Article: February 1999

thisform.pageframe1.page2.checkbox.caption

In order to reference the same check box’s caption in
VB, you simply use the following code:

check2.caption

This tells us a couple of things. First of all, you’ll wear
down your keyboard less, since you have to do much less
typing. Second, every control on a form has to have its
own unique name—regardless of where it lives. Thus,
while you can have a “checkbox1” on each page of a four-
page tabbed dialog box in VFP, you’d have “check1,”
“check2,” “check3,” and “check4” in VB. Third, the
containership, or lack thereof, is going to have some
serious ramifications on programming that we’ll see later.

Slinging code
As I just mentioned, when you write code, you don’t have
to use a fully qualified name for a control—simply the
name of the control and its property or method name.
Second, in order to get to the code, you can either press
the View Code button or just double-click on the form.
But here’s where it can get confusing. Remember that you
can use the icon in the bottom left of the window to
display all the code for the form, or just the code for the
current object (either the form, or a control on the form).
When you double-click on a control that has no code
attached to it, you’ll get a new module for the Click event
of that control already built for you, as shown in Figure 1.
Otherwise, double-clicking on a control with code in one
of its events will bring up the code for that event.

The code window can contain code for one or more
events, for one or more controls. Each “chunk of code”
attached to an event has two parts. The first is the
declaration of the module, and the second is the
termination of the module, as in the following code:

Private Sub Form_load()
<your code goes here>
End Sub

Each of these “chunks of code” is referred to as a
subprocedure, or a function, or, generically, a code
segment. The “Sub” keyword means that this is a
subprocedure—much like procedures in Fox. (I’ll discuss
the difference between procedures and functions shortly.)
The “Private” keyword means that this subprocedure
scope is the form—it can be called by code elsewhere in
this form, but not anywhere else in the project.

The subprocedure’s name consists of the name of the
control and the event to which the module is attached.
Remember last month’s warning: Putting code in a
module and then changing the controls’ name will result
in the module being orphaned.

The code window also has a section called “General”
(it’s the first entry in the object drop-down at the top of
the code window). You can use this area to create your
own subprocedures and functions, much like form-level
methods in Fox.

The parentheses following the name of the control
enable you to pass parameters to the code segment. For
example, suppose you have a form with a check box and
a command button on it. You could use the following
code to pass the caption of the control to a form-level
function that would display the caption whenever the
control was clicked.

Private Sub MySub(xmessage)
 MsgBox (xmessage)
End Sub

Private Sub Check1_Click()
MySub (Check1.Caption)
End Sub

Private Sub Command1_Click()
MySub (Command1.Caption)
End Sub

In this brief example, you can see that the same
basic <groan> programming principles apply—calling
a subroutine with a parameter. And since MySub is
declared as private, you can’t go off and call that
very valuable subprocedure from another component
in the project.

Procedures vs. functions
The difference between subprocedures and functions in
Visual Basic is the same as in VFP—subprocedures don’t
return values; functions do. You know the rest. Well,
actually, you don’t know all the rest. You define a function
(a user-defined function, of course—VB also comes with
its own set of functions that work just like in any other
language) like so:

Private Function AlphabetizeName(FirstName, LastName)
AlphabetizeName = LastName & " " & FirstName
End Function

Figure 1. Double-clicking on a control formerly without code
opens up a new module for the Click() event of that control.

http://www.pinpub.com 3FoxTalk Extended Article: February 1999

Private Sub Command1_Click()
 MsgBox (AlphabetizeName(Check1.Caption, Check4.Caption))
End Sub

The AlphabetizeName function takes two parameters
as input, reverses them, and concatenates them with a
space between them. The Command1 button takes the
captions of two check boxes on the form and passes them
to the AlphabetizeName function. The result of the
AlphabetizeName function is then sent as a parm to a
MsgBox function as the message to display.

The most interesting thing to note about VB functions
is how to return values. The AlphabetizeName function
has a variable with the same name as the function that
receives the value to be returned to the caller. Once you’ve
got that down, the rest is easy.

Next topic, please.

Option Explicit
Visual FoxPro is a “weakly typed” language, which
means that you can assign any old value to any old
variable, and then change the value of the variable any
old time you want. This provides terrific flexibility, but at
the same time, it exposes you to untold amounts of
danger, which you’re well aware of.

Visual Basic has this same capability—weakly typed
variables—but you can also force VB to make you define
what variables you’re going to use, and what data type
they’ll be. This is called “strong typing” and is done by
checking the Require Variable Declaration check box in
the Editor tab of the Tools, Options dialog box.

After you do so, every new code window you open
up will have the keywords “Option Explicit”
automatically entered in the General code segment. All
variables in the form will need to be declared before you
can use them.

In order to declare a variable, it would be helpful to
know what data types Visual Basic has, wouldn’t it?
They’re shown in Table 1.

Table 1. Variable types in Visual Basic 6.0.

Type Description
Boolean Logical
Currency Floating point number with four decimal places
Date Date and/or Time
Double Large floating point (decimal) number (in the gazillions)
Integer Small integer
Long Large integer
Single Small floating point (decimal) number (in the billions)
String We know these as character strings

To declare a variable, use the Dim keyword, like so:

Dim bIsAlive as Boolean
Dim cNetPay as Currency
Dim dBirth as Date
Dim fNationalDebt as Double
Dim iCounter as Integer

Dim lWorldCitizens as Long
Dim fTaxRate as Single
Dim sName as String

You can also use the Private and Public keywords to
control the lifetime of the variable; Private variables have
scope throughout the routine, form, or module they were
declared in, while Public variables are available to any
code anywhere in the project in which they’re declared.

Public sName as String
Private sName as String

I’ll beat on this for a bit, because strongly typed
variables are a significant difference between VB and
VFP. Once you have an Option Explicit declaration in
your code (and you can type it in manually in the General
code segment if you didn’t check the Require Variable
Declaration check box), you must declare every variable
you use.

This prevents two undesirable behaviors from
occurring. First, you can’t accidentally create a bug by
mistyping the name of a variable. In the following code,
we’re trying to assemble a message, sMessage, from
consecutive values of the string sNewValue. However,
sMessage is never modified, because the second-to-last
line assigns the concatenation of the existing string,
sMessage, and the new value, sNewValue, to a mistyped
variable, aMessage:

sMessage = ""
For iCounter = 1 to 10
 <some code>
 sNewValue = <some function>
 aMessage = sMessage + sNewValue
End For

If you included an Option Explicit declaration in
your code, you’d have to declare sMessage, iCounter, and
sNewValue, and the compiler would detect an undeclared
variable, aMessage. Bet you’ve done that once or twice in
Fox, haven’t you?

Second, by declaring the data type, you won’t
accidentally change the data type of a variable. You’ve all
done something like this:

dBirth = date()
<some code>
dBirth = 0

Strong typing of your variables will prevent this from
happening again.

Adding your own methods
to forms and applications
Earlier in this article, I showed how you can add your
own methods—functions or subprocedures—to a form by
simply adding them in the General section of the code
window. Even if declared Private, those functions and

4 http://www.pinpub.comFoxTalk Extended Article: February 1999

subprocedures are now available throughout the form.
However, you’ll also want to create functions and

subprocedures that are available globally throughout your
application, much like common code in an .APP
procedure file in Fox. In VB, these types of files are called
modules. They’re text files with .BAS extensions, and they
live in the Project Explorer alongside forms and other
components. In order to create a module, open the Project
Explorer (you can do so through the View, Project
Explorer menu command), right-click in the window, and
select Add, Module from the context menus that display
(see Figure 2).

You’ll be prompted for the module to add—either an
existing one or a new one, as shown in Figure 3.

The module will be added to the Module node of the
Project Explorer, as shown in Figure 4.

To create a subprocedure that’s available in other
parts of your project, simply create it like you did in a
form:

Sub Herman()
 MsgBox ("This is the Herman sub in the first module")
End Sub

Then, to call the Herman subprocedure, use code like
the following that’s in the click event of the Command2
command button on a form in the project:

Private Sub Command2_Click()
Call Herman
End Sub

Notice that the Call keyword was required this time
in order to run the subprocedure. This can vary, as you’ve
seen earlier, depending on how you structure the syntax
of the subprocedure and the way arguments, if any, are
passed to it. Me? I like to use functions as much as

possible so that I can return a value that indicates whether
the execution of a procedure was successful or not, so I
don’t worry about the Call syntax at all.

You can also create a subprocedure in a module that
serves as your startup program for your application. In
order to do so, name it “Main.” Then, if your project also
has forms, you’ll need to tell Visual Basic that it should
run the Main subprocedure first, instead of the first form
created in the project. To do so, right-click in the Project

Figure 2. Add a module to a project through the Project Explorer
context menu.

Figure 3. You can choose to add a new module or an existing one
to your project.

Figure 4. The Module node of the Project Explorer holds all
modules for this project.

http://www.pinpub.com 5FoxTalk Extended Article: February 1999

Explorer and select the ProjectN Properties menu
command (where “ProjectN” is the name of your project).
Open the Startup Object drop-down in the General tab,
and choose Sub Main (see Figure 5).

That’s about it for this month—we’ve covered a lot of
fundamentals about building programs and determining
where all the pieces go, and now it’s time for the next big

chunk—commands and functions—in next month’s
column. Stay tuned! ▲

Stupid VB Tricks
Differences between VB and VFP and inconsistencies in the

VB environment that can “gotcha” if you’re not careful or

observant. Only one this month:

Stupid VB trick #4
If you double-click on a control in order to open the code

window for that control, the procedure for the Click() event of

that control will be displayed if there wasn’t any code

attached to that control to begin with. However, if you select

that control, right-click to bring up the context menu, and

select the View Code menu command, the same behavior

doesn’t occur.
Figure 5. Set the Startup Object in the Project Properties to the
Sub Main subprocedure in order to make it run as the first
component in your application.

