
Figures:
File for Subscriber Downloads:

What’s Really New in VFP 7.0
Whil Hentzen

By now you may well be sick and tired about hearing about VFP 7.0. It’s been demonstrated ad naseum for
nearly two years now, and you probably think you know it all by now.

However, there’s a technique that the various product teams in Redmond use when demonstrating
unreleased products that you may you may not be aware of. The timeworn tactic for pre-release demos is to
gradually open the kimono, bit by bit, instead of ripping it off all at once. That’s why you saw the first sneak
preview to VFP 7 at DevCon 10 in Palm Desert, but then a longer demonstration at DevCon 11 in Miami in
2000. However, the kimono wasn’t completely open even then; at FoxTeach 2001, it was announced that
the Setup Wizard would be replaced with a specially designed version of InstallShield. But not even at the
Canadian Launch of VFP 7 was it all revealed.

The product team has saved the best for last, and has asked, once again, FoxTalk to disclose the last
new feature added to VFP 7. And this one comes back to where we live – data.

To fully appreciate this new feature, I need to discuss a bit of history, and I need to explain a bit of
complex computing as well.

History of the Fox, Part I
FoxPro 1.0 gave IBM PC developers a GUI on top of a DOS foundation. We suddenly had GUI-style
controls, like command buttons, option groups, and combo boxes, just like a Mac, available to our dBASE
III+ applications. Better, though, was the addition of SCATTER and GATHER to take the place of the
timeworn REPLACE command. You could move data in and out of an entire record with a single
command, instead of a laboriously hand-coded routine with dozens of field names.

FoxPro 2.0 then went deep under the hood, and gave us Rushmore. Suddenly tens of thousands of
records were scoffed at, hundreds of thousands of records were dismissed in short order, and even million
record tables were only grudgingly allowed to be considered ‘large.’ Rushmore technology could access any
record in a blimptosecond, and we could write apps that were comparable, dollar for dollar, with any system
on the planet.

FoxPro 3.0, called Visual FoxPro, introduced a new data feature called buffering. Prior to the
introduction of buffering, developers had to resort to any number of intricate constructs in order to handle
multi-user record locking. One typical approach was to create a temporary record that held the original data,
and then use that temporary record as a baseline for comparison after multiple users had made changes in
order to determine which data ought to be saved. Buffering was Visual FoxPro’s built-in version of this
temporary record concept.

The developer now had the choice to use the old-fashioned scatter/gather, use no buffering at all, use
pessimistic, or optimistic locking with row or table level buffering, and attach that to a table or a form.

History of Computing, Part 27
In the beginning of computing, there were mechanical devices. Expensive and hard to construct, these never
became popular. Then the first computers featuring vacuum tubes, such as ENIAC, were introduced. They
worked, but were difficult to maintain because vacuum tubes were very fragile. Then the transistor was
invented, and the IC, and computers became smaller and faster. Gordon Moore, one of the founders of Intel,
postulated the well known law that computing power would continue to double every 18 months.

However, even silicon and other elements have limits, and electrical engineers and computer scientists
are thinking that this limit might be reached in the next ten to twenty years. As a result, people have been
experimenting with a completely new type of computer called a quantum computer, based on quantum
theory.

Quantum theory, essentially, states that a quantum computer processor can answer multiple questions
(or perform multiple calculations) at the same time, instead of sequentially, as we normally think of
processors working now. The details of how that works are complex, but one offshoot of this is that data can

occupy multiple values at the same time, and the final value will be that which the user views at the
completion of a calculation.

The last new feature of VFP 7
A couple of the rocket scientists in Redmond who are responsible for thinking great thoughts about data
were talking about these quantum computer processors last fall, and one of them made the jump from
individual quantum bits to quantum bytes – and then to quantum fields in databases.

Fox being the favorite testing ground for advanced technologies at Redmond, they immediately
proposed the concept of quantum buffering to the Fox product team. The slowest part of a database is the
writing of data, because there’s a lot going on – finding the record, writing to disk, confirming the write,
and all of it involving that yucky hardware.

Why, they asked, couldn’t we improve the speed of a database by introducing quantum buffering
during the read and write of database accesses? In other words, why can’t we have a data field contain both
values – the original value and the saved value – at the same time? This would speed up processing
significantly, wouldn’t it? Naturally, the Fox team was all ears when it came to improving the speed of their
database tool, and a working prototype was put together within six weeks of the initial proposal. Just as
when Rushmore was released, the specific internals are a secret, but here’s a rough sketch of what will
happen as far as the developer is concerned:

Before a read or write operation occurs, a field will contain a value, say, “A”. Then the user will
perform an action, causing a read or write operation to occur. Invoking the laws of quantum theory allows
that field to contain both the original and the new value at the same time. Once that operation has been
completed, the field will contain the appropriate value. The user will view the result, and see the final
answer.

In other words, there will be a piece of data on disk, and when accessing that record, the record will be
quantum buffered so the user can view the data – whether it’s the original value or the new value
immediately – before the data is actually read. However, the actual value of the data will not be known until
the user reads the record, and the value will only be decided at that point.

Performance Improvements
You may be skeptical at this point. “This sounds pretty good in theory, but what’s the performance really
like in the real world?” Given that this is still in beta, the final results aren’t in, but so far the results are very
promising. The speed improvement in a read is approximately a factor of 15 – that’s 15 times faster. The
speed improvement in a write is much more significant – by a factor of 80 to 90 times – that’s almost 100
times faster.

The only downside is that the value of the data is unknown – it can contain both values - until the user
sees it again. This may be a problem for systems that rely on or retrieve data without the user viewing it first
– such as compilation queries, and so on. At this point, however, this merely appears to be an
implementation issue.

Fox has always been fast – the fastest kid on the block, in fact. With this new advancement of quantum
buffering, Fox will be even faster than ever. I’m reminded of the limerick that played on Einstein’s theory
of relativity:

There was a young lady named Bright
Whose speed was much faster than light
She set out one day
In a relative way
And returned the previous night

With quantum buffering in Visual FoxPro 7, we’ll be able to execute a query, say, in the middle of the
month, like April 18, and have the results returned days or weeks before – like on April 1st. I know I can’t
wait until the product ships!

