
Version: FoxPro 7.0
Figures:
File for Subscriber Downloads:

Publishing Your First Web Service –
Part II
Whil Hentzen

Last month we built our first Web Service, published it, and consumed it – all on our development
machine. It wasn’t a very good Web Service, but that wasn’t its purpose. Its purpose was to show
you the steps to take, where all the tools are, and which secret buttons to push. At the end, I
promised that we’d deploy that Web Service to a live server this month, but in the interim, I’ve
changed my mind. After going through that process a few times, the inevitable questions arise. This
column answers many of those questions, and prepares us for the Real Deal – deployment on a live
server – next month.

This month I’m going to go through a Q&A of the process, in order to explain what’s going on under the
hood, and what some of the options you have are. A lot of that information wouldn’t have made sense
during our first run-through, but now that you’ve seen the whole process, you’ll be able to put some of these
more advanced issues in context. Once we’re done with that, we’ll be more comfortable with the nuts and
bolts, and then we’ll be ready to deploy – yes, next month.

Proper Names
First of all, let’s talk about the name of the Web Service class.

o=createobject("wsc.hwpclass")
? o.getnews()

This means that wsc is the project and hwpclass is the name of the class. And GetNews is a method of the
class. The best practices suggestion for naming ProgIDs of components says that ProgIDs should follow the
pattern of company.project.class. Thus, this ProgID should have been named

Hentzenwerke.wsc.hwpclass

That really doesn’t tell us much, because “wsc” and “hwpclass” are dummy names for this example. Given
that the purpose was to dig out news, perhaps a better name would include a project named FoxTalkDemo,
and the class would be named NewsServices. Thus, the ProgID would be

Hentzenwerke.FoxTalkDemo.NewsServices

Now, how do you do this? You use the Servers page of the Project Info Dialog. See Figure 1.

Figure 1. Naming a COM component properly.
Figure WS19

Registering a DLL
When you build your DLL with the Project Build dialog (Figure 3 of last month’s article), you’re doing
more than creating a file with a .DLL extension. You’re also registering the DLL in the Windows Registry.
This was, when another program receives a call to create an object like

o=createobject("wsc.hwpclass")

or (in Visual Basic)

Dim o As New wsc.hwpclass

The “wsc.hwpclass” ProgID is used to look up the CLSID in the Windows Registry. The CLSID is used to
look up the full path to the DLL/EXE and its type library. The type library, then, is used to determine the
interface.

You can rebuild your class over and over again if you like, and the same ProgID is used – the entry in
the Windows Registry is simply updated. If you change your interface, though, then you’ll want to check the
Regenerate Component IDs checkbox. You need a new ProgID and CLSID because you wouldn’t want a
user to create an instance of the new version of the component (with its new interface) using the old ProgID
and CLSID. Imagine how hard that would be to debug!

Publishing your Web Service
Simply building your DLL, though, isn’t enough to make it a Web Service. It’s what logicians call a
‘necessary but not sufficient’ condition. A Web Service is a DLL that has been worked on some more, so to
speak. We used the Visual FoxPro Web Services Publisher to publish the DLL as a Web Service. The Web
Services Publisher does the following things:
- creates WSDL and WSML files
- optionally, registers with IntelliSense
- optionally, installs a project hook in the VFP project so that subsequent rebuilds of the DLL automatically
call and run the Web Services Publisher.

In general, the WSDL and WSML files are similar to type libraries in VFP and VB. In other words,
they describe to the outside world what methods are in the Web Service.

WSDL stands for “Web Services Description Language” – it’s an XML document that describes what
services are available from the Web Service on the server. It’s sort of like a menu. The WSDL file also
describes the format that the client must follow when requesting a service.

WSML stands for Web Services Meta Language. This is particular to SOAP 2.0, and it provides the
information needed to map the operations of a WSDL-described service to specific methods in your DLL.
The WSML file determines which COM object to load in order to provide the Web Service requested.

You can find out more info about these files – way more than you’ll ever want to know – using the
SOAP 2.0 help file, probably located in Program Files\MSSOAP\SOAP.CHM.

When you then consume a Web Service, you’ll call a WSDL file, which tells you if the way you’re
calling the web service is legit or not. For example, if your Web Service has a method called “GetNews”,
the WSDL contains that info.

Here’s what a part of the WSDL file looks like:

 <portType name='hwpclassSoapPort'>
 <operation name='getnews' parameterOrder=''>
 <input message='wsdlns:hwpclass.getnews' />
 <output message='wsdlns:hwpclass.getnewsResponse' />
 </operation>

When you try to consume that Web Service by invoking a method called GetNewsOfTomorrow, the call
will fail, because the WSDL file doesn’t know anything about the GetNewsOfTomorrow method.

Select Class
When you publish your Web Service, you use the Visual FoxPro Web Services Publisher. (See Figure 8 of
last month’s article.) In my example, the Select Class combo was disabled. Why is it a combo, and why is it
disabled?

You can have multiple OLEPUBLIC classes in a COM component, but a Web Service can only publish
one of those classes. (Of course, one of those classes can expose any number of methods.) The combo is
used to select which class you want to publish with this particular Web Service. If you wanted to publish
more than one class, you’d need to create another Web Service.

Advanced options – saved settings
The settings in the Advanced Options dialog are saved and will be used for subsequent publications of the
Web Service. They are saved in the FOXWS.DBF file, the location of which is stored in the _FOXCODE
system memory variable.

Advanced options – virtual directory
In the Advanced Options dialog (see Figure 9 of last month’s article), the location of your WSDL file and
Listener include the name of the virtual directory that your Web Server is pointing to.

Whoa, you say. Virtual directory? Yes, I said “Virtual Directory.” And if you’ve already done the
virtual directory thing, you might still want to read. Here’s the deal.

I have IIS set up so that the home directory points to E:\INETPUB\WWWROOT. But Figure 9 from
last month shows that the WSDL (and, presumably, the WSML) file is in http://FOXDOTNET/webpub. I
would have thought that this meant physically the WSDL and WSML files went into
e:\INETPUB\WWWROOT\WEBPUB. However, when I published my Web Service, the publisher put the
WSDL and WSML files in C:\INETPUB\WEBPUB. In other words, somewhere else. I was terribly
confused at first.

It turns out that the first time you run the Web Services Publisher, a virtual directory is created
automatically. This virtual directory is a semaphore that points somewhere else. Thus, in
http://FOXDOTNET/webpub, FOXDOTNET points to the IIS root on my machine, and “webpub” is the
virtual directory that points to a specific physical directory on the machine. In this particular case,
“webpub” points to C:\INETPUB\WEBPUB. Note that the virtual doesn’t even have to point to a location
in the same vicinity as the IIS root. That’s why the WSDL and WSML files ended up in
C:\INETPUB\WEBPUB, not E:\INETPUB\WWWROOT\WEBPUB.

http://FOXDOTNET/webpub
http://FOXDOTNET/webpub

How do you set up a virtual if you haven’t already done it? Or if you want to change it? First, open up
IIS in the Computer Management applet in Control Panel. Right click on Default Web Site and select the
Properties menu option, and click on the Home Directory tab to display the Home Directory properties as
shown in Figure 2. And that’s the home directory that IIS is pointing to.

In order to create a virtual directory that points elsewhere, right click on the Default Web Site node and
select New | Virtual Directory to bring forward the Virtual Directory Creation Wizard welcome screen, and
then click Next. In the next dialog, enter the name of the virtual directory. For example, the VFP Web
Services Publishing wizard uses “WebPub” as the name of their virtual directory.

Next, point to the directory that the virtual directory will represent - in other words, the physical
directory on your machine. You can either browse for the directory or just type it in the text box. Then
you’ll need to configure access permissions. Don’t worry if you don’t get them all correct – I’ll show you
where you can change these in a moment.

After clicking Next in the Access Permissions dialog, a “Finished!” dialog appears, and you’re done.
The results – a new virtual directory – will be visible in the Default Web Site tree in the Computer
Management applet. Now you can go look at the virtual directory properties – and change them - by right
clicking on the virtual directory node in Computer Management, and selecting the Properties menu. The
properties dialog will appear, and the access permissions checkboxes are visible in the middle of the dialog.

Advanced options – ISAPI vs ASP listeners
The next option you see in the Web Services Publisher Advanced Options dialog is the choice of listener.
What is a listener? A listener is a mechanism (physically, it’s a DLL) that handles incoming SOAP requests
on the server. You have two choices for a SOAP listener:

 An Internet Server API (ISAPI) server
 An Active Server Pages (ASP) server

When you use an ISAPI listener, then the SOAPISAP.DLL is used. When you specify an ASP listener, then
the ASP page specified causes ASP to handle the request.

In the Web Services Description Language (WSDL) file, the URL identified as the server-side handler
of the SOAP request determines how the SOAP request is handled on the server. For instance, the following
WSDL file fragment identifies the URL that invokes the ISAPI listener:

<definitions>
…
 <service name='DocSample1' >
 <port name='DocSample1PortType' binding='tns:DocSample1Binding' >
 <soap:address
 location='http://localhost/DocSample1Test/DocSample1.wsdl' />
 </port>
 </service>
…
</definitions>

If this URL identified an ASP file instead, it would look like this

‘http://localhost/DocSample1Test/DocSample1.asp’

and invoke the specified ASP script. The problem is that VFP, by default, tries to register Web services
using an ISAPI listener. However, the SOAPISAP.DLL listener is not typically configured in IIS and has to
be configured for ISAPI listeners to work. Go figure, right? The quick workaround is to simply configure
the WS to use an ASP listener. However, Microsoft recommends ISAPI listeners for performance reasons.

Here is how to set up the ISAPI listener (for SOAPISAP.DLL), if you want to. (You can find additional
details in the “ISAPI listener” topic in the SOAP.CHM file.)

First, right click on your Default Web Site in IIS, select Properties from the pop-up menu and click on
the Home Directory page as shown in Figure 2:

Figure 2. The Home Directory tab of the Properties dialog.

Click the Configuration button to open the Application Configuration dialog as shown in Figure 3:

Figure 3. The Application Configuration dialog displays mappings between extensions and server
DLLs.

Look for the .wsdl extension in the list. If it isn’t there, click the Add button. In the Add/Edit Application
Extension Mapping dialog, shown in Figure 4, click the Browse button and browse for the file “C:\Program
Files\Common Files\MSSoap\Binaries\soapisap.dll” and set up everything else as shown:

Figure 4. The Add/Edit Application Extension Mapping dialog allows you to create and edit
mappings between extensions and server DLLs.

If you can’t find the DLL you’re looking for via the Browse button, don’t fret. I’ve set up application
extension mappings on a number of machines in both NT4 and Windows 2000 for a variety of applications,
and I’ve never found the DLL in the File Open dialog. You can pick a similar file (often I’ll use an INI file
with the same name) and then edit the name of file once the Add/Edit dialog has been filled in.

Figure 5 shows you what it will look like filled in.

Figure 5. The Add/Edit Application Extension Mapping dialog after it’s been filled in.

Gary DeWitt reports that this process works fine but he has not been able to get an ISAPI listener to work
on a server running Windows XP Professional. You might need to use ASP listeners on XP boxes.
However, you probably will only run into this during development, as you wouldn’t want to use XP
professional for an actual deployment – you’d want to use NT4 or Windows 2000 Server.

Advanced options – IntelliSense scripts
Checking the “IntelliSense scripts” check box and entering a name will create an IntelliSense entry in
FOXWS.DBF. If you don’t check this check box, you’ll have to write out all the code by hand when you
create a program using a Web Service.

You can use your own name instead of the default provided. In the example in February’s article, the
default was “hwpclass web service” – not very useful. If I had named the class a bit better, such as
“NewsService”, the IntelliSense name would have been “NewsService web service” – much better.

Advanced options – UTF-16 Unicode
English and most European languages use a single-byte character set – all of the necessary character
combinations can be represented by a single byte. In other languages, such as Oriental dialects, there are
more characters than can be handled by a single byte, so two bytes are necessary. Unicode is a type of
double-byte character set. If you need to use a double-byte character set, you’d check this box.

Web Services Publishing Results
The next dialog shows you what happened. A COM server was created, WSDL was created, the listener was
identified, and an entry in IntelliSense was created. Why do you care about IntelliSense if you’re publishing
a Web Service? I mean, you’re creating files to deploy – why do you want IntelliSense entries on your
development box? Mainly because you’ll want to test your Web Service immediately after testing. You
don’t have – if you would be testing from somewhere else, but that’s probably a fairly rare circumstance.

Web Services Registration
On the flip side, you’re a client, wanting to consume a Web Service. In order to do this easily, you created
an entry in the IntelliSense Manager by clicking on the Web Services button in the Types tab to open the
Visual FoxPro Web Services Registration dialog. See Figure 14 in last month’s article for a refresher.

This dialog allows you to name the entry being stuffed into the IntelliSense Manager as well as identify
the Web Service you’re interested in. In last month’s article, we pointed to the Web Service we just built on
the same machine; most likely when you’re consuming a Web Service, you’ll be pointing to another
machine – somewhere else in the Internet Universe.

Specifically, this operation puts entries into FoxCode so that you can type

LOCAL ows as

pick “hwpclass web service” from the drop down list, right next to other classes like textbox and grid, and
have all of the code associated with that Web Service into your program (or command window).

Why \NEWS was kludged to be found in the root (and where a COM server is run from)
When you ran the COM server from the VFP command window, like

o=createobject("wsc.hwpclass")
? o.getnews()

Visual FoxPro instantiated the class from VFP’s current directory. It’s not running the COM server that was
registered in the Windows Registry. This is why it found data on drive E.

However, when you ran the test program that created the web service, you actually instantiated the
DLL, using information in the Windows Registry. I have my test program in the root of drive E. But the
COM component isn’t installed or running from the root of E. Where IS it running from? From
WINNT\System32! How do you know that? You could have someone tell you that, or you could figure it
out with a temporary piece of code like so in your wsc.prg, just before the SELECT statement:

strtofile("Where is my web service DLL is running?", ;
 "myveryownwebservice.txt")

When you run your web service, the file “myveryownwebservice.txt” will be written in the current directory
– in this case, winnt\system32.

In other words, when you run a COM component, the default directory is the directory where the Visual
FoxPro runtime files are (which can be identified by looking at the HOME() function). Typically, this is the
system directory – and that’s NOT a good place to be sticking things…. Like your data!

So, when you install your DLL (and any supporting files), do the install in a directory of your own
choosing. Then, in your code, issue the command

set default to (JUSTPATH(_VFP.ServerName))

The ideal place would be in your class’s Init event, so that the rest of your code can find everything.
Thus, when the sample Web Service looked for NEWS.DBF in last month’s article, it was looking in

WINNT\SYSTEM32. Since, initially, NEWS.DBF was buried somewhere on drive E, well, sorry Charlie.
Thus, for the sake of this demo, I explicitly pointed to the root of the current directory, and then copied the
NEWS.DBF file to the root of drive C. When we go ‘live’ next month, we’ll clean that up a bit, but for the
time being, while we’re trying to get our IIS virtual directory and the WSDL and all the other pieces
working, the last thing we needed to worry about is some pathing issue having to do with the data itself.

Passing parameters
In the little chunk of code I wrote in last month’s article, I allowed for a parameter to be passed in. While
the mechanism I used works for regular old COM components, components that are published as Web
Services should use the AS keyword to define parameter and return value types. If you tried to pass a
parameter to the Web Service before making that change, you’d get an error message as shown in Figure 6.

Figure 6. Passing parameters incorrectly results in an awkward error message.

Specifically, the first few lines of the class should be changed from

DEFINE CLASS hwpclass AS session OLEPUBLIC
Name = "hwpclass"
PROCEDURE getnews
LPARAMETERS ldDate
DO case

To

DEFINE CLASS hwpclass AS session OLEPUBLIC
Name = "hwpclass"
FUNCTION getnews (ldDate as Date) as String
DO case

This defines a parameter, ldDate, of type Date, and defines the return type as String as well. After that
change has been performed, you need to republish the Web Service (using the Tools | Wizards | Web
Services menu option). If you don’t republish, you’ll see the following in your WSDL file:

 <message name='hwpclass.getnews'>
 </message>

There is no parameter in this declaration. If the WSDL knew about the parameter, it would be listed in the
XML above and would include its type, like so:

 <message name='hwpclass.getnews'>
 <part name='ldDate' type='xsd:dateTime'/>
 </message>

Next in the “bad” WSDL file, you’ll see the following:

 <message name='hwpclass.getnewsResponse'>
 <part name='Result' type='xsd:anyType'/>
 </message>

The return type is “anyType”, MS SOAP Toolkit lingo for “variant”. This means either that the method was
defined in a VCX (not true in this case – I used a PRG) or a return type wasn’t specified (guilty as charged).
After defining the type of the return value, the WSDL file shows the following:

 <message name='hwpclass.getnewsResponse'>
 <part name='Result' type='xsd:string'/>
 </message>

Much better.

Now, in WSCTEST.PRG, you’ll use the line

m.lcX = oWS.getnews({^2001/11/2})

to pass a date parameter to your Web Service.
Note that you don’t have to write your code in a PRG. You can use a VCX – you just need to expose it

for COM or Web Services from a PRG, like so:

DEFINE CLASS MyCOMInterface AS Custom OLEPUBLIC
FUNCTION MyMethod (MyParm AS String) AS String
 LOCAL o AS myclass
 o = CREATEOBJECT("myclass")
 RETURN o.MyMethod(MyParm)
ENDDEFINE

This causes all sorts of good things to happen. First, it’s a good separation of interface and implementation.
(If you’re still fuzzy on this concept, just think of the interface as being the properties and methods that the
outside world – like users of the Web Service – can see, while the implementation is the programming
magic you worked inside the component – the magic that no one else will see.)

Second, you can’t define types in VCXs – only in PRGs, via the inline syntax I just showed you.
And finally, if you do this, you can define the interface, build your component, and publish the Web

Service (create the WSDL, in other words) just once. You can go back and tweak the implementation
without having to republish the Web Service. The COM type library will export your actual data types, not
variants, and the resulting Web Service will also show the types correctly.

DLL In Use errors
You will most likely have to rebuild your DLL in Visual FoxPro over and over again. When you do so,
you’ll probably run into the error message “XXX.DLL is in use” and you won’t be permitted to finish the
build process. What’s happening is that IIS has cached your module in memory in order to improve
performance. Yeah, I know, it’s not improving our performance as developers, is it?

OK, so the DLL is still running – how do you get it to stop? The sure fire method is to close everything
down and reboot your machine, but, well, that can be time-consuming and tedious. The better way is to
issue the Restart IIS command.

Open up the Computer Management applet from the Control Panel, select IIS, right-click and select the
Restart IIS menu as shown in Figure 7.

Figure 7. Restarting IIS from the Computer Management applet.

You’ll be greeted with the dialog shown in Figure 8.

Figure 8. Selecting an option in the Restarting IIS dialog.

Select Restart Internet Services, click OK, and wait, oh, maybe a half minute or so. Eventually you’ll be
returned to the Computer Management screen and you’ll see your services are running again. You can now
rebuild your DLL.

Too much work? If you’re an old codger, you can also use a DOS window to run IISRESET. It’s much
faster than using the GUI tool. Just issue IISRESET at the command prompt, and then hit F3 every time
after that.

That’s all the questions we have time for this month. Now that we’ve got a more thorough
understanding of what’s going on under the hood, we can create a more robust Web Service. Next month,
that’s exactly what we’ll do – and we’ll deploy it as well!

Whil Hentzen is editor of FoxTalk.

