
Getting started with Client-
Server with SQLite

Whil Hentzen

“We need to get away from DBFs” is a refrain I
hear regularly from fellow developers. Be it due
to perceived instability of the file format, the need
for tables larger than 2 GB, or the result of
political machinations, the result is the same – a
desire to move to a SQL database back-end.
SQLite can be an excellent intermediate step – and
possibly the final word - in the process of
restructuring your application to talk to a SQL
back-end.

You've got a FoxPro application that's been
running fine for years. Lately, though, you've
been feeling the need to make some changes. The
overriding change in your mind is to a new back-
end for the data.

You're not happy with DBFs; while they are
much more robust than a decade or two ago, they
are still open to corruption once in a while. More
so, since they're DBFs, they're accessible from
other programs - open up Excel or OpenOffice.org
or even Access, and the data is there for the world
to see. To say nothing of a text editor, when you
think about it.

And DBFs have limits. Two gigabytes of
limits, specifically. Back in the day, a two gigabyte
file seemed inconceivable, but these days, not so
difficult to hit. You're tired of having to archive
last year's data into separate files because you're
running out of room.

So you're seriously thinking about moving to
a client-server architecture. You've been thinking
that way for quite a while, but that move is not a
trivial task.

First, there's the selection of which SQL
database - SQL Server or MySQL or PostgreSQL
or Oracle or.... - and that's both a technical and a
financial decision. Likely some political concerns
in there as well.

Next, you'll also have to learn to manage the
infrastructure of a SQL database back-end. Then
the installation on a dedicated server box, and
setting up access from the outside - be that
elsewhere on a protected network or from the
Internet at large. Configuration, setting the
parameters and tuning the database for the type

of application you're running, and learning to use
the configuration management console.

But a database isn't any good until people and
applications can get at it, so you'll have to set up
security - permissions and users and roles and
perhaps other layers. That's another user interface
to learn and master, perhaps an entire separate
application.

All of this has to be done perfectly, else you'll
run into a problem later on where an operation
isn't work, and you tear your hair out, wondering
why the code isn't working in THIS specific case,
and only much later do you find out that your
code is working fine, thank you very much. The
problem has to do with a change in the IP
connection.

Once you're comfortable with management
and administration of the SQL database server,
you can get back to where you wanted to be in the
first place - programming. Remember
programming? And the To Do list here isn't trivial
either.

You may have to learn a new language - not
everyone has made the leap from the xBase
paradigm using SKIP and DO WHILE loops to
SELECT, INSERT and UPDATE SQL commands.

It's not just lingo, though. You likely have to
restructure most if not all of your data handling,
away from the record-based logic that uses the
aforementioned SKIP and DO WHILE commands,
and to the set-based logic of SQL. Many, many
applications were written with their data
manipulation code intertwined with the user
interface, perhaps dating back to the FoxPro/DOS
and FoxPro for Windows days, like so:

@1,1 SAY customer->name
skip
@2,1 SAY customer->name
skip

to display an abbreviated list of customers.
The classic VCR-style Next-Previous-First-Last
navigation style buttons rely on being able to
move through a table's records sequentially. Even
more recent VFP applications often have bits and

pieces of DBF navigation and manipulation
strewn throughout their methods.

And inertia is a powerful thing, after all. It's
easy to let things get in the way: "We'll tackle this
as soon as <fill in the name of some calendar-
based event that doesn't seem too distant, yet far
enough away that planning doesn't need to be
undertaken quite yet.>"

The big win
What if you didn't have to worry about the first
half of this exercise quite yet? What if you could
get to the Visual FoxPro programming part of this
conversion in about ten minutes? What if you
didn't have to worry about the SQL database
selection, installation, configuration, or security
setup at all?

Yes, it can be done.
SQLite (sqlite.org) is a fast, highly-reliable,

zero-installation, zero-configuration, completely
free SQL database that is perfect for learning to
transition your application that relies on an xBase
data paradigm to a client-server architecture.

But I've never heard of SQLite
Of course you haven't. Nobody has. But nobody
has heard of VFP anymore, either. That doesn't
mean it isn't still be used all over the world.

SQLite's claim to fame is a triple threat of
having a small footprint (the EXE is less than half
a megabyte), fast (I've done VFP queries against a
20 million row SQLite table that returned results
before my hand was back on the mouse from the
keyboard) and reliable (the automated testing
done on each new release is mind-boggling.) And
being public domain, it's guaranteed to be free of
license fees forever.

If you search your local PC for “sqlite3”,
you'll likely find a half-dozen instances where it's
bundled with this piece of software or that. For
example, Mozilla Firefox and Thunderbird,
Google Chrome, Adobe Reader and Photoshop,
Skype, Dropbox and McAfee all use SQLite as the
internal file format.

It's bundled with PHP, Python and
REALbasic, and is also used in dedicated devices,
such as the iTouch and iPod, the Symbian OS, and
the flight control software for the Airbus A350.

Using it, you'll be able to focus on learning
client-server techniques without having to worry
whether problems you run into are your own
programming fault, or if they're due to a
configuration or permissions issue with the
server. More than one developer has spent
embarrassing amounts of time wondering why
the result set came back empty, only to find out
that the server was in fact not running. (If the
refrain from The IT Crowd, “Have you tried

turning it off and back on again?” is going
through your head, you're not alone.)

SQLite is, however, a single-user server, in
that it locks the entire table when writing to it. As
a result it is appropriate for certain types of
desktop applications and completely
inappropriate for others. A surprising number of
Fox applications are single-user, for example. And
others may have multiple users who primarily do
queries, but writes are performed either by one
user, or in extremely limited quantities by
multiple users. It's also appropriate for Web-
based applications that have a single 'user'.

This series of articles comprise a tutorial on
what's needed to set up SQLite for use with VFP,
what you need to know in order to work with
SQLite independently of VFP, how to connect to
SQLite from within VFP, and then introduces
some unique characteristics of SQLite that you'll
want to be aware of when using it.

Setting up SQLite
If you've done any investigation with other SQL
databases, you know that there's a fair amount of
work involved with installation, configuration,
and security setup. With SQLite, only one step is
required: install the SQLite ODBC driver.

Yes, that is the ONLY step needed.
SQLite consists of one 500K executable that

has no installation requirements, no
configuration, no permissions or user setup. The
ODBC driver for SQLite is packaged with the
SQLite database executable, so installing the
driver automatically installs EXE as well.

The 3.4 MB ODBC driver package
(sqliteodbc.exe) is available from

http://www.ch-werner.de/sqliteodbc/

and is included with the source code for this
article.

Run the EXE and it'll run you through the
usual five screens to install the ODBC driver. I
suggest you uncheck the SQLite2 and TCC
components in the fourth screen, as I've had bad
luck with the installation when they're checked,
and they're not needed for our purposes.

Once you're done with the installation, you'll
see the SQLite driver listed in the ODBC Data
Source Administrator, as shown in Figure 1.

Figure 1. The Drivers tab of the Data Source Administrator
shows the SQLite ODBC drivers.

Connecting to SQLite
If you've gone through the process of connecting
to a different ODBC data source in the past may
be expecting that the next step is to set up a
specific SQLite DSN for use with VFP. Supposing
you did so, creating a DSN named 'slvfp'. Doing
so means you could then write code like so:

? sqlconnect("slvfp")

to connect to the database.
Not so.
Unlike other SQL connectors, a DSN with

SQLite must include the name of the database file
- and the fully qualified path to that database if
it's not in the path. That lessens the flexibility of
such a connector. So, instead, we'll build a
connection string that includes the location of the
SQL database file that we want to use. The string
would look like the string in Listing 1.

Listing 1. A SQLite connection string.

"DRIVER={SQLite3 ODBC
Driver};Database=f:\DatabaseOne;StepAPI=0;Sync
Pragma=NORMAL;NoTXN=1;Timeout=500000;ShortName
s=0;LongNames=1;NoCreat=0;NoWCHAR=0;FKSupport=
1;JournalMode=;OEMCP=0;LoadExt=FTS4,SEE;BigInt
=0;"

and can be passed to sqlstringconnect() as an
argument. This may be a mouthful for the first
time user; all full of syntax and possibilities for
typos.

The magic question has always been, "How
do you determine what the syntax of a connection
string is?" Here's how, in two basic steps.

First, create a system DSN for a specific SQL
database. Open the ODBC Data Source
Administrator via Control Panel.

From the System DSN tab in the ODBC Data
Source Administrator dialog, click the Add
button, and select the SQLite driver from the

alphabetically organized list, as shown in Figure
2.

Figure 2. Selecting the ODBC driver for SQLite when creating
the DSN.

Next, the DSN Configuration dialog appears.
Fill the values for a name and point to the
database name, as shown in Figure 3.

Figure 3. The ODBC Connector dialog with appropriate values
filled in.

Click OK for your new DSN. End of step 1.
You may be wondering about this

“DatabaseOne” file in the root of drive F. What if
you don't have a “DatabaseOne” SQLite database
file? This is the file that will contain everything
having to do with the database – tables, indexes,
and metadata. It doesn't have to already exist
when you create your DSN – you can enter the
name of the SQLite database you want to create
from VFP if you like. (You just have to make sure
you enter a valid path.) If you jump over to drive
F after creating the DSN, you'll see that it doesn't
exist yet. It gets created when you actually make
the connection – which we'll do next.

Step 2 is extracting the connection string.
Open up VFP and enter the following commands:

m.liHandle = sqlconnect(“slvfp”)
m.lcX = sqlgetprop(m.liHandle, ;
 “ConnectString”)
? strtofile(m.lcX, “\teststring.txt”)

Let's take a look at this code.
The first line connects to the SQLite database

using the new DSN. The return value is either a
postitive integer (the number of the connection, or
'handle' that has been established) or a negative
value (indicating failure.) The handle is the value
you'll use to perform all future operations, so it's a
good idea to store it to a value immediately.

The second line queries the DSN's properties
and places the value of the "ConnectString"
property into a variable. If you type

=sqlgetprop(

into the command window, you'll see that
Intellisense pops open a combo box with a dozen
available DSN properties to examine.

The third command saves the value of the
ConnectString property to a file that you can
experiment with. In the case of SQLite, it will look
like Listing 2:

Listing 2: A default SQLite connection string.

"DRIVER={SQLite3 ODBC
Driver};Database=f:\DatabaseOne;StepAPI=0;Sync
Pragma=NORMAL;NoTXN=0;Timeout=100000;ShortName
s=0;LongNames=0;NoCreat=0;NoWCHAR=0;FKSupport=
0;JournalMode=;OEMCP=0;LoadExt=;BigInt=0;"

This can appear to be pretty intimidating, so
let's break it up into easily digestible pieces. A
connection string is made up of two or more key-
value pairs, each separated by a semi-colon. For
readability's sake, I put each pair on its own line,
as shown in Listing 3.

Listing 3: A typical SQLite connection string, broken into key-
value pairs.

"DRIVER={SQLite3 ODBC Driver};
Database=f:\DatabaseOne;
StepAPI=0;
SyncPragma=NORMAL;
NoTXN=0;
Timeout=100000;
ShortNames=0;
LongNames=0;
NoCreat=0;
NoWCHAR=0;
FKSupport=0;
JournalMode=;
OEMCP=0;
LoadExt=;
BigInt=0;"

Each key-value pair specifies a single setting
in the connection string.

A connection string for SQLite must have at
least two key-value pairs. The first identifies the
driver. When a new ODBC driver is released, part
of the string will change, perhaps from “SQLite3”
to “SQLite4”. You can determine the string from
the description of the driver in Figure 2.

The second key-value pair that is required is
the identification of the database. While you can

get away without including the fully qualified
path name here, doing do will require that the
database file be discoverable via the VFP path,
and that is a route fraught with danger. Better to
explicitly define the path and leave no question
about where the database is, or (in the case of
multiple database files residing on disk, say, for
test and live use cases) which version is being
accessed.

What about the rest of the key-value pairs? If
you examine Figure 3 carefully, you'll see that
each control in the Configuration dialog maps to
key-value pair in Listing 3. Key-value pairs are
automatically created for each setting, with the
value being set to the default value. The sudden
appearance of more and more parameters in the
connection string can soon lead one to think that
you’ll never learn all of the possible values, and
that you better just stick to the DSN wizard. Not
necessarily! You can leave out the parameters that
are SQLite's default values, and just explicitly
define the ones that are different. If you wanted a
different timeout value, for example, you'd
include a key-value pair like this:

Timeout=5000

Doing so, our connection string now looks
like Listing 4.

Listing 4. A stripped down connection string.

"DRIVER={SQLite3 ODBC Driver};
Database=f:\DatabaseOne;Timeout=5000;"

You can pass the stripped down connection
string to the SQLStringConnect() function, like so:

m.lcXN = "{DRIVER=SQLite4 ODBC Driver};" ;
 + "Database=f:\DatabaseOne;Timeout=5000;"
liHandle = sqlstringconnect(lcXN)

As you can see, now that we're building the
connection string in code, the location of the
database can be built on the fly, instead of having
to have a hard-coded path in the DSN.

Next issue, we'll discuss what can go wrong
when connecting, how to recover, and start
manipulating databases.

Author Profile
Whil Hentzen is a independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

	Getting started with Client-Server with SQLite
	Author Profile

