
Dealing with SQLite 
Connection Errors

Whil Hentzen

“We need to get away from DBFs” is a refrain I 
hear regularly from fellow developers. Be it due 
to perceived instability of the file format, the need
for tables larger than 2 GB, or the result of 
political machinations, the result is the same – a 
desire to move to a SQL database back-end. 
SQLite can be an excellent intermediate step – and
possibly the final word - in the process of 
restructuring your application to talk to a SQL 
back-end. In this article, I discuss how to deal 
with the usual spate of errors that can occur when
connecting to SQLite from VFP.

The true hallmark of an amateur, it is said, is the 
squeal of delight when their attempt at 
accomplishing a technical task works, because the 
amateur thinks they're done, and is ready to move
on to the next step in the process.

Those of us who have been around the block a
few times know that the first success simply 
means that the proof of concept step has been 
passed - that the goal is technically "possible". The
next step is to lay the foundation for all of the 
problems that could occur, because, inevitably, 
they will.

In my last article, I showed how to set up 
SQLite and connect to it from within VFP. Proof 
of concept achieved. Let's now look at what could 
go wrong.

SQLite needs the database name and 
path

The first error you might run across when trying 
to connect is if you forget to include the database 
name in the connection string, or if you use a path
that doesn't exist. It's easy to troubleshoot, 
though, because the result of this error is VFP 
displaying the SQLite3 ODBC Driver Connect 
dialog as shown in Figure 1.

 
Figure 1. Not including a valid database file name and path in 
the connection string forces the Driver Connect dialog to be 
displayed.

There are some rules about what works and 
what doesn't in terms of a valid database name 
and path. Here's the logic used by the connection 
code:

1. Is a Database string provided in the 
Connection String? If no, open the Driver Connect
dialog. If yes, go to Step 2. 

2. Is a valid path provided in the name and 
path string? If no, open the Driver Connect dialog,
with the string that was provided displayed as the
default value in the Database Name textbox. If 
yes, go to Step 3.

3. Does the database file that was specified in 
the name and path string exist? If no, create a new
file. If yes, connect to the file.

Typographic errors
The next error you will likely run into is a simple 
typographic error in the connection string. 

If you’ve mistyped the connection string, like 
so:

m.liH = sqlstringconnect("{DRIVER=SQLite3 ODBC
Driver};Database=f:\t1")

(the error is that the opening braces is before 
the word “DRIVER” instead of before the word 
“SQLite,” a common problem), you’ll get a dialog 
box asking you where the driver is, as shown in 
Figure 2.



Figure 2. The Select Data Source dialog appears if you 
mistype a driver name.

Easy enough. But what about those not as 
easily troubleshot? The next type of trouble will 
be indicated when you don’t get an immediate 
response; typically, a successful connection 
returns a value before you can blink. A connection
attempt that fails can take 5 to 10 seconds before 
the dreaded ‘-1’ appears. 

For example, using parens instead of braces to
surround the driver name will cause the 
SQLStringConnect command to simply return a 
-1. 

Bad:

m.liH = sqlstringconnect("(DRIVER=SQLite3 ODBC
Driver);Database=f:\t1")

Good:

m.liH = sqlstringconnect("{DRIVER=SQLite3 ODBC
Driver};Database=f:\t1")

Not very obvious, but eventually detectable. 
Other times, errors can be even more obscure. 
Here's how to gather better information about 
what's happening.

Gathering error information
Error information on the ODBC connection 
attempt can be captured via the AERROR 
function, like so:

m.lcXN = “{DRIVER=SQLiteXXX ODBC 
Driver};Database=f:\t1”
liHandle = sqlstringconnect(lcXN)
dimension abc[1]
? aerror(abc)

In this example, you may have already 
noticed that the name of the driver is invalid – no 
such thing as SQLiteXXX as of this writing (or 
probably ever) - thus generating an error. Open 
up your Locals window (found under the Tools 
menu if the Debugger is in the FoxPro frame or 

under the VFP Debugger’s Window menu if 
you’re running the debugger in its own frame) as 
shown in Figure 3. 

Figure 3. The Locals window allows you to easily drill down 
into an AERROR array.

Spelunk through the results. Unfortunately, 
the errors returned by the driver can sometimes 
be pretty misleading. In this example, I specified a
bad driver name, which means VFP and ODBC 
weren't going to find “SQLiteXXX ODBC Driver” 
in the Windows registry. I don't think that “Data 
source name not found” doesn't make sense – 
given that I didn't specify one at all – and “no 
default driver specified” was similarly obscure. 
The error should have been something like 
“Could not find driver.”

If you don’t want to go through the trouble of 
using the Locals window, you can simply issue a 

display memory like abc

command and view the results on the VFP 
desktop. 

abc[1,1] = 1526
abc[1,2] = "Connectivity error: [Microsoft]
[ODBC Driver Manager] Data ..."
abc[1,3] = "[Microsoft][ODBC Driver Manager] 
Data source name..."
abc[1,4] = "IM002"
abc[1,5] = 0
abc[1,6] = 3
abc[1,7] = .NULL.

An alternative to AERROR()
It can be a nuisance to have to go through the 
DIMENSION and AERROR rigamarole each time 
you run into an error during development. You 
can get VFP to throw a dialog displaying errors 
via the SqlSetProp() function, like so:

=SQLSetProp(liH,"DispWarnings",.t.)

The error description will be shown in a 
dialog as shown in Figure 4.

You need to use the DIMENSION and 
AERROR commands in a production system so as
to protect the user from unfriendly error messages
that they don't know how to deal with, so you’ll 
definitely want to turn this setting OFF in your 
applications by issuing a

=SQLSetProp(liH, “DispWarnings”, .f.) 



command in your application's setup.

Figure 4. After setting DispWarnings to True via 
SQLSetProp(), errors will be displayed in a dialog.

DSNs or connection strings?
As with everything in Visual FoxPro, there are a 
dozen ways to perform a task. Sometimes even 
thirteen ways. And if you ask 13 developers 
which way is the best, each will argue 
vociferously that their way is the best. So how do 
you choose? Specifically, what are the pros and 
cons of DSNs and connection strings?

The primary advantage of a DSN is that it is 
stored in the Windows Registry, which keeps it 
reasonably secure from prying eyes and others 
who would inadvertently or malevolently cause 
problems. (You could even prevent access to it 
altogether using Windows’ Group Policies, a topic
worth investigating but way beyond the scope of 
this article.) Furthermore, it is possible to create a 
routine to check for the DSN upon application 
startup. Chapter 13 of MegaFox, “How can I be 
sure users have the correct settings,” has details. 

You could even reinstall the DSN 
programmatically during startup, exporting the 
ODBC settings from the Windows Registry as a 
.REG file, and then execute it on other machines 
using ShellExecute(), if you needed to. This way 
users can update settings automatically on 
application startup and DBAs can retain control 
over connection information.

The main disadvantage of DSNs, especially 
System DSNs, is that they are available to any 
application running on your system. A fairly 
smart user then could fire up a copy of, say, 
Microsoft Excel and connect to your data using 
the DSN which has the username/password 
stored in it.

The advantage of connection strings is that 
they are infinitely flexible, as they are built at run-
time. It’s not a difficult task to store connection 
string parameters in the system’s meta data 
(encrypted, please, if your connection string 
includes user logins and passwords) and retrieve 
them as necessary. Some developers may feel 
more comfortable manipulating system meta data 
instead of having to get into the Windows 
Registry.

I personally prefer connection strings to 
DSNs, but that’s just a personal preference. I don’t

have a passionate view of one over the other, and 
suggest that you try on both for size, and see 
which fits to your liking.

Next issue, we'll start manipulating databases.

Author Profile
Whil Hentzen is a independent software developer 
based in Milwaukee, Wisconsin (as opposed to 
Milwaukee, Minnesota, as many people think.) His 
writing has killed many trees over the years, but none 
since 2007. He has realized he really sort of misses it. 
You can reach him at whil@whilhentzen.com


	Dealing with SQLite Connection Errors
	Author Profile


