
Inserting Large Amounts of 
Data into SQLite

Whil Hentzen

“We need to get away from DBFs” is a refrain I 
hear regularly from fellow developers. Be it due 
to perceived instability of the file format, the need
for tables larger than 2 GB, or the result of 
political machinations, the result is the same – a 
desire to move to a SQL database back-end. 
SQLite can be an excellent intermediate step – and
possibly the final word - in the process of 
restructuring your application to talk to a SQL 
back-end. In this article, I'll show you how to 
work with SQLite directly in order to quickly 
insert large amounts of data into a SQLite 
database, and then how to export data from 
SQLite into other data file formats.

SQLite has native capabilities for importing and 
exporting data from its tables. These are handier 
and faster to use than writing code in VFP to 
import large quantities of pre-defined data. In 
order to do so, you need to use SQLite separately 
from Visual FoxPro, specifically, the SQLite 
Command Line Shell.

You know how one of the beauties of VFP is 
that you can create a table, add records, and query
subsets of data simply by typing a few commands
into the Command Window? SQLite is more like 
VFP than any other Client-Server tool in 
providing the same type of ease of use.  The 
Command-Line Shell, available from the SQLite 
website, is the VFP Command Window 
equivalent. 

Installing SQLite
VFP includes the Command Window as part of 
the vfp.exe executable. You can look at this in 
another way, that the executable for the VFP 
Command Window also includes the VFP data 
engine. Similarly, you can think of the SQLite 
Command-Line Shell as containing the SQLite 
engine, and you wouldn’t be far wrong. 
So simply by firing up the Shell, you've got the 
SQLite data engine running and available to you. 
To do so, put the sqlite3.exe file anywhere you 
want and execute it. For example, you can call it 
from a Windows Shell, as shown in Figure 1.

Figure 1. Calling SQLite from a Windows Shell.

An advantage to calling SQLite from a Windows 
Shell is that you can include the name of the 
database you want to work with and have the 
database attached (SQLite's equivalent of VFP's 
'open') automatically. Figure 1 shows the database
'db' being included in the call to the sqlite3 EXE.
An alternative way of calling SQLite is by double-
clicking on the file in a file manager. The result is 
shown in Figure 2.

Figure 2. The Command-Line Shell for SQLite.

In this situation, you'll have to execute a command
at the sqlite> prompt to attach a  database – I'll 
cover this in a moment.

The SQLite Command Line Shell
The Command-Line Shell (referred to simply as 
the “Shell” from now on) works similar to the VFP
command Window – you type commands and it 
echoes results. Two immediate differences; first, 
you need to terminate SQL commands with a 
semi-colon, like so:

sqlite> select * from table;

and second, results are returned inline with the 
command prompt as shown in Figure 3 (like the 
DOS prompt and Windows Command Shell), as 
opposed to VFP that echoes results to the VFP 
desktop.



Figure 3. Results are returned inline.

Types of Shell commands
Above, I mentioned that SQL commands need to 
be terminated with a semi-colon. Why didn't I 
simply say 'commands'? Because there are two 
types of commands you can execute in the Shell. 

The first are standard SQL commands that are
passed through to the SQLite Library for 
execution. The usual suspects include SELECT, 
CREATE INDEX, DROP TABLE, and so on. You 
can type a command all on one line, or you can 
press Enter whenever you like, and the Shell will 
display a second line that starts with a new 
prompt, like so:

sqlite> select it1, cnafirst, cnalast
sqlite> from t1
sqlite>where cnalast = 'Smith'
sqlite>

When you're done, type a semi-colon, press Enter, 
and the command will be executed.

The second type of commands are interpreted
directly by the SQLite Shell program itself, and 
are identified by preceeding the command by a 
dot. Some of these commands control control how
the Shell works, similar to VFP's SET commands. 
For example, 

.header

controls whether headers are displayed in the 
output of a SELECT command. Others provide 
specialized data handling, or display information 
about the shell.

Importing text files
The .import command is the one we're interested 
in so that we can import text files.

.import dot command
The .import Command-Line Shell dot command 
imports a text file into a table. To use it, you'll 
need a source text file that is formatted to match 
the structure of the target table. The data in the 
text file has to follow these rules:

 For each desired row in the table, 
there must be a separate line in the text 
file. 

 For each field in the table, there 
must be a data element (or a placeholder) 
in each line.

 Each data element must be 
separated from the next by the character 
designated as the separator. The default 
separator is the pipe (|), but can be 
changed by the .separator Command-Line
dot command.    

Thus, for the table created with this command:

sqlite> create table t1 (first_name, 
last_name, room_no);

The text file would have to look like this:

Listing 1. t1_input.txt

al|weird|105
bob|barker|122
cher||999
donna|summer|
edgar|winter|400
madonna||999

Note that lines 3 and 6 do not have a value in 
the last name field, but there are two separators, 
creating a placeholder for the last name field.  
Line 4 does not have a value in the room number 
field, but there is a separator, again creating a 
placeholder for the room number field.

In the Shell, you'd then use the command:

sqlite> .import t1_import.txt t1

If you don't have the right number of separators 
in the text file, you'll get an error message like so:

sqlite> .import t1_import.txt t1
Error: t1.txt line 6: expected 3 columns of 
data but found 2.
sqlite> 

and no data will be imported. Blank rows at the 
end of the text file will similarly throw an error, as
the blank row will be interpreted as not having 
enough columns.

Speed
The .import dot command is blindingly faster 
than using VFP and ODBC. I inserted 1.000,000 
short records (three fields) using VFP. It took 16 
and a half hours. (ODBC is slow.) Then I exported
those million records into a flat file, then used 
the .import dot command to add those records to 
a SQLite table. The import command took six 
seconds.

Exporting data
You can get data out of a SQLite database and 
into a different file several ways without using 
VFP. 



Redirect via .output
The first way is to simply redirect the output of 
SQL commands to a file, then execute the SQL 
command itself. This technique has the advantage
of being able to pull just the selected data out of 
the database. For example, 

sqlite> .output an_output_file.txt
sqlite> select * from t1;
sqlite> .output stdout

The first command defines the name of the text 
file that all output from the Shell will be directed 
to. The second is the command itself - the one that
creates the data set. And the third redirects Shell 
output back to the screen. If you don't issue the 
third command (.output stdout), future 
commands will echo back to the 
an_output_file.txt file as well. For instance, try 
this:

sqlite> .output an_output_file.txt
sqlite> select * from t1;
sqlite> .output stdout

When you open up the "an_output_file.txt" file, 
you'll see the results of the SELECT command :

Listing 2. Results of .output being sent to a text file.

al|weird|105
bob|barker|122
cher||999
donna|summer|
edgar|winter|400
madonna||999

Create list of SQL commands
The .dump dot command will create SQL 
commands for every row in the specified table. 
For example, to "dump" table t1:

sqlite> .dump t1;

The results will look like this:

Listing 3. Results of the .dump dot command.

PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE t1 (cnaf, cnal, room_no);
INSERT INTO "t1" VALUES('al','anxious',NULL);
<many rows>
INSERT INTO "t1" VALUES('madonna','','999');
COMMIT;

Having the results spit to the screen may not be 
that useful. Instead, how about sending them to a 
file:

sqlite> .output t1_output.txt
sqlite> .dump t1
sqlite> .output stdout

And the results of the .dump command will end 
up in the t1_output.txt file, a format much more 
usable.

Author Profile
Whil Hentzen is a independent software developer 
based in Milwaukee, Wisconsin (as opposed to 
Milwaukee, Minnesota, as many people think.) His 
writing has killed many trees over the years, but none 
since 2007. He has realized he really sort of misses it. 
You can reach him at whil@whilhentzen.com


	Inserting Large Amounts of Data into SQLite
	Author Profile


