
The Business Case for
Upgrading Apps to Visual
FoxPro in 2013

Whil Hentzen

So 2013 is getting ready to stare us in the face, and
it seems every week we're getting calls from
customers who have FoxPro 1.x, 2.x or Visual
FoxPro applications in production, wondering
what to do with them. These customers have
thousands, perhaps tens of thousands of hours
invested in their applications, systems that in
some cases run their entire company, but they're
looking at potential problems as Windows goes
through its 5th or 6th new release since their
application was initially written.

Current FoxPro users have several potential
solutions to their quandary.

Door #1 is to do nothing. A lot of companies
have been following this path for the last decade,
and are starting to worry that while 'no choice is
still a choice', it's no longer a good choice.

Door #2 is upgrading their app to the latest
version of VFP. No database changes, use of a
language they're familiar with (to some degree),
may even be able to reuse some of their code and
definitely some of their business logic. The flip
side is that VFP's EOL is looming.

Door #3 is to rewrite their app from scratch in
another language and platform. Promising when
compared to #2, considering that VFP is supposed
to be on its last legs, but the investment in a
complete rewrite in a new language looks
staggering, and rare is the company who put
money aside for this work.

So, all in all, none of these look very
appealing, so they're casting furtive glances at the
box that Carol Merrill is bringing down the aisle,
hoping for a last minute miracle.

This article argues that since 2011, the
business case for upgrading these Fox apps to
VFP - instead of doing a complete rewrite in a
different language - has actually become stronger.
It will come as no surprise to you, gentle reader,
that this viewpoint is anathema in many circles.
Naysaysers will bring up many specious
arguments about why continuing to use VFP is a

bad idea. In this article, I'll first debunk those
myths. Then I'll provide some solid reasons that
make many types of upgrading a compelling
proposition. Finally, I'll deliver the knockout
punch that will have you reaching for the
“Uninstall .NET tutorial” button in your Control
Panel app.

Myth #1: The emotional argument
First, there's a very distinct emotional component
in the anti-VFP crowd's mindset - VFP is not 'cool'
anymore. (Some might argue that it never was,
but I'll address that crowd later.) Everyone wants
to play with the new shiny things. VFP is very
definitely not new or shiny.

Think about the last time a project you
worked on failed because of technology. Kind of
hard to come up with one, isn't it? Not impossible,
sometimes the widgets just don't fit together.
More much more often, though, it's the
Peopleware (thank you, Tom DeMarco) that fails.
Mismatched expectations, unrealistic goals set by
unknowledgable management, ego-driven wars
between programmers, these are the things that
ruin projects.

Indeed, that last one is as big a reason as any -
we've all been thought of as the smart ones as
we've grown up, so we're used to being right,
having our opinion being listened to because it's
the most knowledgeable one in the room. And
just as epic battles have been fought over Chevy
vs Ford, Coke vs Pepsi, and the Red Sox vs the
Yankees, developers wage religious wars over the
choice of development tools, and Fox has been in
the midst of these battles since it took over the
desktop from dBASE in the late '80s, and then was
bought by and sidelined by Microsoft in the early
90s.

Many supposed “technical arguments” are
merely thinly disguised straw horses for
emotional disdain. The fragility of the .DBF
structure, the lack of a true 'data dictionary' in a

supposed 'database', the overwhelming
abundance of commands and functions, the lack
of multiple inheritance.... you'll hear developers
perjore Fox for these and other reasons. Yet every
language or development tool has its weak points;
the important thing to remember is whether a
weak point matters in the environment it's being
used in.

So, separate the emotional arguments from
the valid technical reasons, and realize that many
of the most heated diatribes come from folks
whose growth in social maturity hasn't kept pace
with advancements in their technical wizardry.
Many people will argue against a technology due
to heartfelt desire, rather than rational business
justifications, and not be very nice about it.

Myth #2: The technical weakness
argument
Second, VFP is, technically, long in the tooth - it
never worked hand-in-glove with the Windows
subsystems, and today, even more so. SQL access
can be problematic. Getting VFP to talk to the
Web required the use of a third-party toolset, and
getting VFP to build mobile apps is.... better left
not even attempted. There are better tools.

VFP has its roots in a programming tool
developed for the purpose of tracking sports
statistics so that the author could better compete
in the office football pool. A combination of
relative ease of use (compared to other available
programming languages at the time), a built-in
data engine, and an English-like syntax fueled
growth and widespread adoption throughout the
world.

It's simple and humble roots, though, means
that VFP has never been integrated fully into the
Windows ecosystem. This was never a problem
when building standalone or LAN applications
for the desktop, but means that sophisticated
desktop, client-server, Web-based and mobile
systems are difficult to impossible to develop. But
this discussion doesn't apply to those kinds of
systems - we're talking about existing systems
that were written and fully deployed with
functionality available in 1.x/2.x/early VFP
versions. So the fact that VFP doesn't do mobile,
for example, is irrelevant. We're not upgrading a
20 year old mobile application.

VFP is technically pretty old. So let's not use it
to push state-of-the-art. There are plenty of simple
desktop bread-and-butter apps that need to be
upgraded and don't need those capabilities. VFP
will work just fine.

Myth #3: The termination of
Microsoft support
Most importantly in many people's eyes,
Microsoft's termination of support in 2015 is the
death knell for the product. Who in their right
mind would use a programming language that
has been EOL'd (End Of Life'd) by it's owner?

Frankly, the termination of "support" is
irrelevant. FoxPro 2.x apps were EOL'd in the late
90s, but somebody evidently forgot to tell the
apps, as there are plenty still running fine nearly
15 years later. Who needs "support" for VFP from
Microsoft? When was the last time you called
them for help with your VFP app? If you have a
technical question, there are plenty of forums and
huge knowledge bases full of questions and
answers.

Myth #4: "VFP developers are
hard to find"
Nonsense. At the risk of sounding self-serving, go
to hentzenwerke.com, write down the emails of
all of the authors and editors, and email a
handful. A dozen emails will find you a highly
skilled and available developer.

Yet you'll still hear people with this lament.
What they often mean is "VFP developers with 10
yrs of experience who will work for $50/hr are
hard to find." Yes, yes they are. A few years ago,
there was a job opening in the south that was
being tossed from one headhunter to the next like
a hot potato - and they couldn't understand why
someone wouldn't relocate for a 6 month, $45/hr
job.

So, yes, CHEAP VFP developers *are* hard to
find; if that's what you need, good luck with that.
Maybe there's a reason that $50/hr VB, Java,
and .NET developers are easy to find.

Benefit #1: VFP developers are
careerists
At the risk of painting with too broad a brush,
developers with other languages often get bored
even though their toolset regularly gets rev'd. For
example, there are ongoing discussions
between .NET developers at conferences, user
group meetings, and online where where they are
getting bored with .NET. .NET is maturing after
more than 10 years of development.

Even the .NET framework only rev'd from 4.0
to 4.5 the last time around. Additionally,
Microsoft is not adding things to .NET that appear
to be high on developer's ER lists. However, they
had the time to revamp the UI to monochrome,
which is drawing a lot of flak.

Many of the things that are "new" in .NET are
just making other parts of .NET you spent six
months learning and perfecting obsolete, a bad
practices, or at least uncool.

In contrast, many Fox developers have been
in place for two decades or more – how long have
YOU been using FoxPro? We're happy and
content using it. The best practices we learned 10
years ago are still best practices today. We've
gotten GOOD at FoxPro; we are efficient and
versatile. And we're not bored. Indeed, even
today, don't you get a small thrill every time you
fire up the IDE and start typing into the
Command Window? I'm reminded of the saying,
“I'll give up FoxPro when you pry it from my
cold, dead fingers.”

Various .NET MVPs have been regularly
looking for 'the next best thing', checking out
Ruby, Python, Haskell, Scheme, Objective C,
among others. To be sure, VFP MVPs regularly
migrated from Fox to other languages over the
last decade, but not because of boredom – rather,
due to the fear that the language wasn't going to
last.

Benefit #2: No license fees
We seems to forget that in the Windows world,
VFP's model of NO LICENSE FEES is a bastard
child. Once you spent your $795 for VFP, nobody
in your development ecosphere needs to spend
another nickel - not for server licenses, client
access licenses, runtimes, nothing. That's a big
win for our customers.

Benefit #3: VFP is stable
The product has barely been touched in the last
ten years. Some may argue that this is a bad thing,
but I say, au contraire, papa bear. Let's face it - we
know the language, we know the bugs, we know
the workarounds. It's solid and dependable. How
many times have you written an interface to an
Office product, only to have it break when Office
gets upgraded, because the object model was
changed (or existing functionality somehow was
broken.) An app written in VFP today isn't going
to break when "VFP 10" comes out, it won't have
to be modified to handle the new features of "VFP
2016", it won't generate panic support calls in five
years when an obscure part of the Windows API
changes.

Furthermore, as mentioned earlier, since the
language doesn't change every few years, the
knowledge base on the Web has the answers.
Anymore, there are very rarely situations where
someone runs into an implementation problem or
a programming bug that is 'brand new', unlike
languages that have been upgraded or largely
rewritten in the new version.

Benefit #4: Fire and forget
Consultants dissing VFP, promoting instead a
language that is getting revved regularly, are
acting in their own self-interest. They move a
customer to a regularly upgraded toolset and lo-
and-behold, have created years of ongoing
consulting revenue streams for themselves. How
many VB or SQL Server or Java or .NET apps
written ten years ago are still running 'as is'? They
aren't.

As the infrastructure gets updated (I don't use
.NET for anything, yet I get updates passed along
as part of Windows regularly), the toolset
regularly requires mods to be made to their app.
VFP is very much 'fire and forget' - good for
customers but not so good for developers who
ship the app and don't see ongoing support
revenue.

And second, the argument that VFP doesn't
play well with Windows is actually an advantage.
Again, VFP apps are 'fire and forget'. We build an
EXE, throw it in a folder with a pointer to the
data, and we're done. Windows updates don't
break our apps the way they do with languages
that are tied tightly to the operating system.

I've built perhaps a dozen large (1,000 hours
or more) VFP apps in the last five years and each
one of them was delivered, the source turned over
to the company for future tweaks, and the game is
done. My customers don't have to annually
budget for regular upgrades just to handle the
new version of a product, but that doesn't add
any new functionality that they need. In that
scenario, that's a big source of comfort for many
customers.

Benefit #5: VFP development
costs less
Ask any developer who has built a half dozen
desktop apps in both .NET and VFP how the costs
compare. The handful of long-time .NET and VFP
developers I've talked to say that the same
desktop app in .NET will cost at least twice as
much, perhaps as much as ten times as much.
(These numbers don't take into account the cost of
the tools, add-ons, licenses, and so.)

Let's suppose a conservative multiple of three.
That means the $250,000 upgrade an existing
desktop app to VFP will run $750,000 in .NET.
The VFP app will be 'fire and forget' – once
installed, it's basically done, except for functional
enhancements, for the next ten years (see the next
section for an explanation of why this is so.)

Meanwhile, the .NET app will continually
have to be managed to handle updates to the
current .NET framework installed, and there is the
very real danger of it rendered obsolete and

unusable as .NET is rev'd every few years. The
$750,000 spent to upgrade doesn't include the
maintenance costs for the next decade.

Conclusion: The future game
plan includes VFP for many apps
And here's the big finish. An app written in VFP
and deployed on Windows today can be expected
to live through early 2020s. Why? Because
businesses are moving to Windows 7, not
Windows 8, and it's been demonstrated that VFP
apps will run just fine on Win7.

The word on the street around my neck of the
woods is that - by and large - businesses are
moving to and staying on Windows 7. Businesses
who are on XP (or 2000) are moving to Windows 7
and will stay there for a decade, just like they
jumped in with both feet on XP. Mainstream
support for Windows 7 ends mid-decade, like
VFP, while extended support ends in 2020. So
VFP and Windows 7 can co-exist hand-in-hand
for, at the least, nearly another decade.

Ask yourself – or ask your customers – are
they chomping at the bit with Windows 8? Have
they been deploying beta versions on production
workstations because the user demand is so high?
Are they impatient to roll out Windows 8 to their
entire userbase?

Or are they still using XP, and reluctantly
realizing they have to bite the bullet and make a
full scale switch to Windows 7, realizing that it'll
be a lot of work, but at the same time, the
investment to do so will carry them through to the
early 2020s, just as XP carried them through the
early 2010s?

So, my argument is that - in general - they're
not moving to Windows 8 and Metro. As a result,
your VFP app that runs on Windows 7 has a
decade or more of life in it. By 2021, who knows
what the computing landscape will look like?
Who knows what the business landscape will look
like? The U.S. will have been through three more
congresses, two presidential elections, and untold
changes to the tax code, potentially affecting R&D
and capital depreciation. The Web will have
changed, hardware will have changed, and there's
always the possibility of the appearance of a
game-changing technology that turns our world
around.

For many in that large group of existing
desktop apps already written in Fox, the upgrade
to VFP is a pretty safe bet for the next decade.

Author Profile
Whil Hentzen is a independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His

writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com.

	The Business Case for Upgrading Apps to Visual FoxPro in 2013
	Author Profile

