
Vive La Difference – How
SQLite varies from VFP
SQL

Whil Hentzen

“We need to get away from DBFs” is a refrain I
hear regularly from fellow developers. Be it due
to perceived instability of the file format, the need
for tables larger than 2 GB, or the result of
political machinations, the result is the same – a
desire to move to a SQL database back-end.
SQLite can be an excellent intermediate step – and
possibly the final word - in the process of
restructuring your application to talk to a SQL
back-end.

In the last three articles, I've shown you (1) how to
connect to a SQLite database from VFP, (2) how to
handle a variety of errors you may run into when
connecting, and then how to use SQLEXEC() to
send SQL commands from VFP to SQLite, and (3)
how to move lots of data in and out of SQLite.

In this article, I'll alert you to some of the
differences between SQLite and VFP's SQL
implementation.

There are three categories of differences between
SQLite and VFP SQL. These are (1) language
differences, (2) engine differences, and (3)
implementation differences.

Language differences
The whole point of SQL is to have a standardized
query language that works across platforms,
hardware, languages. Thus, it may come as a
surprise to some that “All SQLs are equal, but
some are more equal than others.”

There are several standard SQL commands
not implemented in SQLite. Furthermore, the
SQLite function set is much smaller than VFP's.

Commands - Joins
Visual FoxPro supports full outer joins. Suppose
you've got a parent table and a child table, such as
Person and Pet, where a Person could have one or
more Pets, but a Pet may or may not belong to a

specific Person. In VFP, you can write a query to
find all Persons with one or more Pets, like so:

select * from person join pet on ;
pet.iidperson = person.iidperson

This pulls only records from Person and Pet
where a Person has a Pet. It ignores the Persons
who are petless as well as the Pets who are strays.

You can also write a query to find all Persons,
whether they have Pets or not, but ignoring
strays:

select * from person left join pet on ;
pet.iidperson = person.iidperson

You can write a query to find all Pets,
regardless if they have an owner or if they're a
stray, but ignoring Persons who don't have a Pet:

select * from person right join pet on ;
pet.iidperson = person.iidperson

And, finally, you can write a query to find all
Persons and all Pets, regardless if they have a
matching record in the other table, like so:

select * from person full join pet on ;
pet.iidperson = person.iidperson

You execute SELECTS like this with SQLite
via SQLEXEC(). (See the March article for details
and multiple examples.) For example,

m.lcXN = "DRIVER={SQLite3 ODBC Driver};" ;
 + "Database=f:\PersonPet;"
liH = sqlstringconnect(lcXN)
=sqlexec(lih, "select * from person ;
 join pet ;
 on pet.iidperson = person.iidperson")

will produce a cursor named “sqlresult” that
can be browsed. This cursor contains all Persons
who have one or more Pets, but no petless
Persons, nor any strays. See Figure 1.

Figure 1. A join executed in SQLite.

Here's the first big difference between VFP
and SQLite: SQLite only supports left joins, not
right or full joins. So you can find out matches,
where there is a Person and a Pet, using a regular
join. You can also find Persons with or without
Pets, like so:

select * from person left join pet on ;
pet.iidperson = person.iidperson

and shown in Figure 2.

Figure 2. A left join executed in SQLite.

In order to find Pets with or without owners,
you can't use a right join:

select * from person right join pet on ;
pet.iidperson = person.iidperson

If you try to execute this, you'll get no
response. Specifically, no 'sqlresult' cursor will be
created, nor will you see an error message.
Instead, if you need a right join, you'll need to
reverse the join syntax, like so:

select * from pet left join person on ;
person.iidperson = pet.iidperson

Not a big deal, but one that can bite you if
you're not aware, and try to use the 'right'
keyword.

Full joins aren't recognized either, but you can
get the same result through a bit of trickery. Since
you're looking for all possible combinations,
you'll need to do a pair of left joins, reversing the
syntax as shown earlier for the second, and then
do a UNION to merge the results:

=sqlexec(lih, "select cnaf, cnal, cnapet ;

 from person left join pet ;
 on pet.iidperson = person.iidperson ;
union ;
select cnaf, cnal, cnapet ;
 from pet left join person ;
 on person.iidperson = pet.iidperson")

The first left join finds all Persons with or
without pets; the second finds all Pets with or
without owners. The UNION clause merges the
two interim result sets and removes the
duplicates. Unfortunately, as shown in Figure 3,
the UNION trickery causes each field to be
converted to a memo field in the cursor, so you
may need to do more work, depending on your
ultimate goal.

Figure 3. Fooling SQLite into doing a full join.

Commands – Alter Table
The other big difference is that VFP's Alter Table
command is much more robust.

In VFP, you can:

 add a new column,

 change an existing column,

 delete (drop) a column,

 rename a column,

 add a candidate index,

 delete (drop) a candidate index,

 add a primary key,

 delete (drop) a primary key,

 add a foreign key,

 delete (drop) a foreign key,

 set a check (validation rule), and

 set an error message if a check
fails.

Additionally, columns can:

 be set to be auto-incremented,

 have a default value,

 be prevented from being
translated to a different code page.

By contrast, SQLite's Alter Table functionality
rather limited. You can:

 rename a table

 add a column

Let's take a look. Suppose we realized we needed
another table in our Person/Pet database for all of
the paraphernalia associated with taking care of a
critter. We add a table called 'gear' to the
database. Not sure what fields we need yet, we
just define a single primary key:

=sqlexec(lih, "create table gear (iidgear
bigint)")

And prove that it worked:

=sqlexec(lih, "insert into gear (iidgear)
values (1)")

Of course, as soon as we hit the Enter key, the
realization that we needed a descriptor hit, so we
used Alter Table to add the new column:

=sqlexec(lih, "alter table gear add column
cdesc char(20)")

And it works just fine:

=sqlexec(lih, "insert into gear (iidgear,
cdesc) values (2,'leash')")

There was already a row in the table without
a value in the cdesc field, so let's take care of that
as well:

=sqlexec(lih, "update gear set cdesc =
'sweater' where iidgear = 1")

Time passes, and we decide that we preferred
a different name for the 'gear' table. So we'll
rename it to 'equipment', like so:

=sqlexec(lih, "alter table gear rename to
equipment")

Unfortunately, THEN we discover that we
can't rename columns in a SQLite table, so the

primary key, iidgear, is now a misnomer, so we
rename the table back:

=sqlexec(lih, "alter table equipment rename to
gear")

And all is good.
There are other differences between SQLite's

implementation of SQL and the full language, but
these two (Join, Alter Table) that most VFP
developers need to be concerned with.

Functions
SQLite has 32 functions. Visual FoxPro has more
than 32 that start with the letter 'A'. (Seriously!
Check it out!)

As a result, there is a great disconcordance
between SQLite and VFP's function set. A few in
SQLite don't map to any in VFP, and a great many
in VFP don't have correlations in SQLite.

More importantly, there are a few that do
match up, albeit sometimes inexactly. It's handy
to have a chart of how those do match up, and
what gotchas exist. See Table 1.

Table 1. Mapping of VFP and SQLite functions.

VFP SQLite Comments

abs abs Returns absolute value of
argument.

coalesce
ifnull

Returns first non-NULL
argument.

len length Returns lengths of
argument.

lower lower Returns lower case version
of string argument.

ltrim ltrim Returns string after
removing spaces from left
side of string. (SQLite
version has additional
functionality.)

max max Returns largest argument.
Serves as an aggregator
with only a single argument.

min min Returns smallest argument.
Serves as an aggregator
with only a single argument.

nullif Returns first argument if the
arguments are different and
NULL if the arguments are
the same.

rand random Returns a pseudo random
integer. Range differs
between VFP and SQLite.

strtran replace Returns a string formed by
substituting string Z for
every occurrence of string
Y in string X.

round round Returns the first argument
rounded to the # of digits
defined in second
argument.

rtrim rtrim Returns string after
removing spaces from right
side of string. (SQLite
version has additional
functionality.)

soundex soundex Returns the Soundex
encoding of the argument.
Only available in SQLite if
SQLITE_SOUNDEX
compile time option is
turned on.

substr substr Returns a substring of input
string X that begins with the
Y-th character and which is
Z characters long.

trim trim Returns string after
removing spaces from both
left and right sides of string.
(SQLite version has
additional functionality.)

vartype typeof Returns data type of
argument. VFP: “C”, “N”,
“D”, etc.
SQLite: "null", "integer",
"real", "text", or "blob".

upper upper Returns upper case version
of string argument.

In order to practice with these functions, you
can send dummy SELECT statements to SQLite,
using the function as the only argument, like so:

=sqlexec(lih, "select abs(-4)")

This will return a cursor with a single row, as
shown in Figure 4.

Figure 4. Practicing with SQLite functions.

With that technique in hand, let's look at the
functions listed in Table 1 in more detail.

abs(X)
Works the same in both VFP and SQLite.

coalesce(X, Y, Z...), ifnull(X, Y)

Returns the first non-NULL argument in the
argument list, or NULL if all arguments are
NULL. Ifnull() is the same as coalesce() but with
exactly two arguments.

len/length(X)
Difference function names for the same

functionality – returning the length of the string
passed as an argument. The following query:

=sqlexec(lih, "select *, length(cdesc) ;
 from gear")

produces the result set shown in Figure 5.

Figure 5. Results of the length() function.

lower(X)
Works the same in VFP and SQLite.

ltrim(X)
Works the same in VFP and SQLite.

max(X,Y), max(X)
Works the same in VFP and SQLite. When

passed multiple arguments, returns the largest:

=sqlexec(lih, "select max(1,2,3,7,200,6,-4)")

The result is shown in Figure 6.

Figure 6. Passing multiple arguments to max().

However, when passed a single argument
that is a numeric column in a table, the function
returns the value in the row with the largest
value:

=sqlexec(lih, "select max(iidgear) from gear")

The result is shown in Figure 7.

Figure 7. Passing a single argument to max().

min(X, Y), min(X)
The min() function works identically to max()

except that it returns the lowest value.

nullif(X, Y)
In the same ballpark as coalesce() and ifnull(),

this one returns the first argument if the
arguments are different and NULL if the
arguments are the same.

rand/random()
Works nearly the same in VFP and SQLite.

The range of values that the random number is
pulled from varies.

In VFP, the random number is a decimal
between 0 and 1. It can contain up to 14 decimal
places, so when multiplied by a power of ten in
order to produce an integer, random numbers
available range from 1 to approximately 400
quadrillion.

In SQLite, the random number ranges from
approximately -9223 quadrillion to +9223
quadrillion.

Additionally, the VFP rand() function can be
seeded with an argument in order to change the
start of the random number sequence generated.

rtrim(X)
Works the same in VFP and SQLite.

strtran/replace(X,Y,Z)
Returns a string formed by substituting string

Z for every occurrence of string Y in string X. For
example,

=sqlexec(lih, "select *,
 replace(cdesc,'a','A') as cdescA from gear")

will return 'collAr' from a field that contains
'collar'. This is the same functionality as 'strtran()'
in VFP.

round(X,Y)
Works the same in VFP and SQLite.

soundex(X)
Soundex is an algorithm for encoding strings

as they are pronounced in English, so that words
that are spelled differently but sound the same
('homophones') can be compared and sorted.

Soundex is a function contained in all major
SQL databases, including Oracle, Microsoft SQL
Server, MySQL, and, of course, SQLite and Visual
FoxPro. As such, the implementation is the same
in both VFP and SQLite. Figure 8 shows the
results of selecting the soundex value of the cDesc
field from the gear table in both SQLite (top) and
VFP (bottom.)

=sqlexec(lih, "select *,
 soundex(cdesc) from gear")
select *, soundex(cdesc) from gear

Figure 8. Soundex() results in SQLite and VFP.

Note that Soundex() may not be part of the
native SQLite implmentation – it is only available
if the SQLite complile-time option,
SQLITE_SOUNDEX, is set when the SQLite
exectutable is built. Soundex() is part of the
SQLite ODBC driver.

substr(X,Y,Z)
Works the same in VFP and SQLite. Returns a

string selected from the string X that begins with
the Yth character and that is Z characters long.
Thus,

substr('Visual Fox Pro', 8, 3)

returns 'Fox'.

trim(X)
Works the same in VFP and SQLite.

vartype/typeof(X)

Returns the type of data passed in the
argument. VFP returns a single upper case
character that maps to the data type (for example,
“C” for Character or Memo, D for Date.) See the
VFP Help file for the complete list. SQLite returns
one of the following text strings: “null”, “integer”,
“real”, “text” or “blob”. The SQLEXEC()
command produces the top half of Figure 9 while
the SELECT command produces the bottom half
of Figure 9.

=sqlexec(lih, "select *, ;
 typeof(cdesc) from gear")
select *, vartype('cdesc') from gear

Figure 9. Comparing SQLite's typeof() and VFP's vartype()
functions.

upper (X)
Works the same in VFP and SQLite.

Engine differences
Some SQLite functions don't have any direct
matches with VFP. See Table 2 for a listing, plus a
brief description of what they do.

Table 2. SQLite functions with no corresponding function in
VFP..

SQL Function Description

changes Returns the number
of rows in the
database that were
affected by the last
successful INSERT,
DELETE or
UPDATE statement.

glob Returns the number
of rows where Y is
“like” X.

hex Returns the upper-
case hexidecimal
translation of the
argument.

last_insert_rowid Returns the row ID
of the last row
inserted into the
database.

like Returns patterns of
the type Y matching
the argument X.

load_extension Strictly not a
function, as it
doesn't return a
useful value. Simply
loads a SQLite
extension.

quote Returns a string that
is translated so that
it can be included in
a SQL statement.

randomblob Returns a string of
N random bytes.

splite_compileoption_get
splite_compileoption_used

Wrappers around
the get and used
functions.

sqplite_source_id Returns a string that
contains the version
of the source code
used to build the
SQLite library.

sqlite_version Returns a string that
contains the version
of the SQLite library
that is running.

total_changes Returns the number
of changes made by
the INSERT,
DELETE and
UPDATE
statements since
the database
connection was
opened.

zeroblob Returns an empty
BLOB N bytes long;
used to reserve
space for a BLOB.

Engine differences
The key engine difference between VFP and
SQLite is that SQLite data types are dynamic. In

VFP, a column is defined as a specific data type
(such as character or date), and from then on, only
that type of data can be put into that column.

In SQLite, the data type can change within a
column; row 1 can contain a date value while the
same column in row 2 can contain a numeric
(“integer”) or a character (“text”) value.

Data types are organized into “storage
classes”. For example, the integer storage class has
six data types – depending on the size of the
integer (one byte long, two bytes long, all the way
up to eight bytes.) The differences between
various data types are for all practical purposes
transparent to the user.

Implementation differences
The key implementation difference between VFP
and SQLite is that the latter is not multi-user.
Multiple users can read from the database, but
only one can write. This is because when SQLite
writes to the database, it locks the entire database.

As a result, unlike other SQL databases that
are inherently multi-user (via locks placed on
single records), only a single user can access the
database at a single time.

Thus, SQLite is best used for three groups of
applications:

- with only one user. This user may be an
interactive user in the case of a desktop
application, or the Web user in the case of a Web
application.

- with multiple read-only users but only one
user who will write to the database.

- with more than one regular user who is
writing to the database, but where the lock of the
database during writes doesn't pose a problem,
because a second attempted write can be detected
and handled.

Source code:
Source code for this article is contained in two
files. The first contains the VFP tables for Person,
Pet and Gear. The second contains the SQLite
database, PersonPet, which contains all three
tables.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

	Vive La Difference – How SQLite varies from VFP SQL
	Author Profile

