
Another Boring Article
About Regular
Expressions

Whil Hentzen

Fox developers have lived a long time without
needing to know anything about regular
expressions. But then that Linux thing became
popular a decade ago, and suddenly literature all
over the place started referencing them. Yet many
developers, not seeing an immediate need,
ignored them. “I've been using Fox since
FoxBase+ any never needed them. I can't see why
I'd need them now.” And, true, you don't NEED
them. But regular expressions fills the need
addressed in this plea “I don't need more input. I
need to be able to create more output.” Regular
expressions might be that tool that will allow you
to fit 36 hours of work into a 24 hour day some
time. So bear with me; in this article, I'll explain
why you MIGHT want to have the ability to use
regular expressions in your toolkit, and how to
get started.

1. How can regular expressions
be useful to me?

Regular expressions can save you time by
providing flexible and complex pattern matching
services so that you don't have to write a lot of
repetitive code to look for one condition after
another. For example, you've likely written
dozens - or hundreds - of lines of code trying to
validate a phone number or an email address. A
regular expression can do that in one line.

You can think of regular expressions as
something along the lines of strtran(), using a
pattern matching expression for the translation of
complex expressions.

For example, with strtran() you can look for
one string in another, and replace it with a third.
Suppose you had a field full of phone numbers,
and somebody had mistakenly entered a bunch of
the '404' area codes with '464'? It'd be easy to
replace them:

cPhone = '464-555-1234'
strtran(cPhone, '464-', '404-')

returns

404-555-1234

The problem with strtran is that you can only
search for literal strings. What if one person
entered '464' and another person entered '484' -
both of them meaning to enter '404'?

There isn't any way to do a single search on
both, sort of like

strtran(cPhone, '4*4-', '404-')

where the '*' would mean either a 6 or an 8.
You'd have to do two separate searches.

Wouldn't it be nice if you could use a
wildcard, sort of like when you used "*" and "?" in
DOS:

dir *.txt
dir BUDGET19??.xls

back in the day?
With a “regex”, you can! In fact, you're not

limited to brute force wildcards. You can use a
pattern, which acts as a 'smart' wildcard. So here
we'd use a pattern,

"4[6|8]4-...-...."

where the

[6|8]

means 'either 6 or 8 in the second position,
between the first and second 4s', and the

.

is a 'any character' wildcard. Then, using the
regexp() function (I'll discuss where that 'regexp()'
function comes from shortly), you could
determine if one string was in another:

cPattern = '464-555-1234'

? regexp(434-555-1000, cPattern)

returns

.F.

while

? regexp(464-555-1000, cPattern)

returns

.T.

Regular expressions can do more than pattern
matching. A full library would also include
pattern matching, positional searching (similar to
substr()), and replacements (similar to strtran().)
The library used in this article simply does pattern
matching, not pattern replacement. In order to
update the field with the corrected version, you'd
need to search for the offending match(es) and
then translate the errant values separately. For
example, suppose you had potentially bad values
in field cPhone1 and wanted to fill cPhone2 with
all good values.

replace cPhone2 with ;
iif(regexp(cPhone1,cPattern), ;
 '404'+ substr(cPhone1,4), ;
 cphone1) ;
all

This is a simple, nee trivial, example. Regular
expressions can match and validate complete Zip
codes, phone numbers, Social Security Numbers,
email addresses, URLs, part numbers, and so on.
Often one line of code can replace dozens or more.
So that's how regular expressions can help you
become more productive.

2. How to implement regular
expressions in VFP
You likely know that there isn't a 'regexp()'
function built into Fox. So how can we implement
regular expressions in VFP, and, more specifically,
where did it come from in the example above?

Windows Scripting Host
One way to implement regular expressions is
through the Windows Scripting Host (WSH).
which contains its own regular expressions
parsing mechanism.

lpara lcPhone
lcPhone = allt(lcPhone)

local loRegExp
loRegExp = createObject("VBScript.RegExp")
loRegExp.Pattern = "4[6|8]4-...-...."

llRetVal = loRegExp.test(lcPhone)

I don't care for the WSH myself, for several
reasons. First, due to a number of gaping security
holes in its early days, I stayed away from it. I still
have my doubts about its security, but that's likely
as much my own foible as anything else.

Second, and more importantly, using the
WSH requires your app to be hooked into
Windows; each time you connect to a Windows
component, you're at risk for your app breaking
when Windows is updated.

The regexp() function is available through a
third-party library that doesn't need to be
connected to Windows at all; throw it and a few
supporting files into your app's folder, and you're
all done. Another example of "Fire and Forget"
that I love so much about Fox.

RegExp.FLL library
Craig Boyd (many people are not aware of this,
but there is not just one person named 'Craig
Boyd', it's actually a label for a set of identical
triplets, none of whom actually ever sleeps) wrote
a regular expressions library for VFP that
provides pattern matching services. He described
how he did it here:

http://www.sweetpotatosoftware.com/SPSBlog/Per
maLink,guid,91241006-595a-487d-ac06-
d0fc1fc71632.aspx

The regexp() function is available from this
VFPRegExp.fll library.

The library requires some C++ runtimes; they
are included in this article's source code along
with the FLL. They are packaged in two zip files,
regexp.zip and microsoft.vc80.crt.zip.

To start working with regular expressions
yourself, download the zips and place them in a
folder, say, 'RegExEx' (for REGular EXpressions
EXamples, get it?). Unzip both, creating a folder
structure like so:

regexex\
 Microsoft.VC80.CRT\
 msvcp80.dll
 msvcr80.dll
 msvcm80.dll
 Microsoft.VC80.CRT.manifest
 regexp.fll

Then start VFP, CD into regexex\, and follow
along. You can duplicate this folder structure as
part of your app; no registration with Windows or
other tomfoolery is necessary!

3. Regular expressions pre-built
examples
There is no practical limit to the variety of pattern
matching you can do with regular expressions.

Additionally, time and space limit us to offering
the barest of examples.

So, before I to any further, I want to mention
that even though this article will only scratch the
surface, you may feel a bit intimidated, thinking
that it wouldn't make sense to become an expert
at this demanding syntax for an occasional use.
And you'd be wrong!

There is an amazing library of patterns at

http://regexlib.com/Search.aspx?Aspx

Enter a type of pattern you want to search for
in the Keyword text box, tweak the desired results
via the other controls, and hit Search. You'll be
greeted with results for a large variety of patterns.
See Figure 1.

Figure 1. The regexlib.com pattern library.

So, my suggestion for you is to scan this
article to get the concept and become familiar
with the basic syntax. Then, instead of spending
hours learning the ins and outs of every technique
to engineer the pattern you need, use the library
to do the heavy lifting for you.

4. Regular expressions syntax
and examples
In the examples below, I'm going to use a simple
table that contains a list of phone numbers, a few
zip codes, and some random character strings. See
Figure 2 for a birds-eye view.

Figure 2. The data for these examples.

Single character matching
The period, as we've seen earlier, matches a single
character.

browse last for regexp(cPhone1, ;
 "464-...-....")

returns all records where the area code is
'464'.

Match any one of a set of characters
The brackets, also as we've seen, matches any
single one of the characters enclosed inside the
brackets.

browse last for regexp(cPhone1, ;
 "464-...-...[12345]")

returns any 464 number that ends in 1, 2, 3, 4,
or 5.

464-555-1001
464-555-1002
464-555-1003
464-555-1005

(Why isn't '1004' in the list? Because the area
code for 1004 is 484.)

Ranges
You can use a range inside the brackets as well:

browse last for regexp(cPhone1, ;
 "464-...-...[5-9]")

Ranges can include numbers, lower case
characters or upper case characters. And, yes,

regular expressions ARE case sensitive! You can
ignore case by preceding the pattern with

(?i)

like so

(?i)[a-z]

Anything but
The carat, ^, negates a condition, like so:

[^3]

so

browse last for regexp(cPhone1, ;
 "464-...-...[^12345]")

returns

464-555-1007
464-555-1009

(Again, 1008 doesn't have a 464 area code.)

Either or
The pipe, |, separates two options and matches
either one or the other. So

browse last for regexp(cPhone1, ;
 "4[6|8]4-...-....")

finds all 464 and 484 area codes.

Beginning and end matches
The metacharacters ^ and $ force a match at the
very beginning or very end of a string.

browse last for regexp(cPhone1, ;
 "^464-...-....")

returns all numbers that begin with '464'.
Then

browse last for regexp(cPhone1, ;
 "...-...-..08$")

returns all numbers that end in '08'. And

browse last for regexp(cPhone1, ;
 "^[4|6]..-...-..08$")

returns all numbers that start with '4' or '6'
and end in '08'.

Repetitions
The braces, {}, match a number of instances inside
the braces of the string just before the braces. For
example,

abcz{3}

will match the string

abczzz

but not strings with 2 or 4 z's.
Supposing you had a table with a Name field.

To find all values with an 'abb' string:

browse last for regexp(alltrim(cName), ;
 "ab{2}")

Note the use of 'alltrim()' around the field.
Without this, the regexp() function will look for
an exact match of the (three character) string 'abb'
in a ten character field, and not find any matches.
With alltrim(), you're trimming leading and
lagging spaces, and thus have a better chance of
finding that match.

Add a comma to match any number equal to
or greater than the number inside the braces. This:

abcz{2,}

will match

abczz, abczzzz and abczzzzzz

Special metacharacters
The \d metacharacter matches any single digit.
It's a replacement for [0-9].

browse last for regexp(cZip, "\d{5}")

The \w metacharacter does the same for
alphabetic characters.

There's more!
These examples demonstrate some of the more
common regex syntax, but in no way are a
comprehensive list. The definitive guide is here:

http://www.regular-
expressions.info/reference.html

And the RegEx Pal website,

http://regexpal.com/

provides a handy syntax checker.

Breaking apart a couple of
common patterns
Let's put together what we've learned so far into a
couple of common examples.

U.S. Social Security Number
The U.S. SSN has the pattern of 999-99-9999. This
one should be pretty easy.

The pattern

http://regexpal.com/
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html

\d{3}

is used for the first segment, and similar
patterns for the other two segments. Combine
them with hyphens, and you get:

\d{3}-\d{2}-\d{4}

Any string of the form NNN-NN-NNNN will
match. Note that this doesn't validate the number
to be valid, but it forces the match on the
structure.

Credit Card Number
A similar pattern can be used to validate credit
card numbers:

\d{4}-\d{4}-\d{4}-\d{4}

This pattern isn't very intelligent; it just looks for
four four-digit strings separated by hyphens. To
make it more useful, you could use

[345]\d{3}

as the first string to ensure that the card
number begins with a valid digit. You could
further include a

6

if you wanted to include American Express,
but you'd then have to do some extra work at the
end because Amex numbers are only 15 digits
long.

U.S. Phone Number
To match a US phone number of the form (999)
999-9999, the pattern would look like

((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

Not the easiest thing to read, even now. If I
had introduced this pattern to you a few pages
ago, you would have shaken your head and
moved to the next article. But now, we have many
of the tools needed to break it apart and analyze
it.

The last section, \d{3}-\d{4}, is made up of
three pieces:

\d{3}
-
\d{4}

These three obviously match the 999-9999 part
of the phone number. The first part is a bit more
complicated. Break it into two pieces and the
separator:

((\(\d{3}\) ?)

|
(\d{3}-))?

where the pipe is the separator. The "\d{3}"
generates the '999' part, obviously, and then
opening and closing parens come along for the
ride. There are two parts so that both "(999)-" and
"(999) " work. The "?" metacharacter, heretofore
unannounced, matches either zero or one
instances of the preceding character (the space or
the parents.)

What's next
The work we've done in this article should be
enough for you to consider adding regular
expression pattern matching to your application
the next time you need it. With 15 or 30 minutes
of work, you can have simple regexes added to
your system, and from there, it's up to you how
far you want to take them.

Source code
Source code for this article is contained in three
files. The first contains the regex FLL. The second
contains the C++ runtime files. And the third
contains a small VFP table, phone.dbf, that can be
used with the examples in this article.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

The \s metacharacter matches a single white
space character, including space, tab, form feed,
and line feed. It is the same thing as specifying
[\f\n\r\t\v].

^take\snote$
This expression will match take note but not

takenote because the pattern calls for a space
between "take" and "note."

\w
The \w metacharacter matches any

alphanumeric character, including the underscore.
You can use this in place of [A-Za-z0-9_].

^take\wote$
This expression will match takenote, takevote,

take8ote, and so on because the pattern states that
the fifth position can be any alphanumeric
character.

\d
The \d metacharacter matches a digit

character. You can use this in place of [0-9].
^\dtakenote$
This expression will match 3takenote,

7takenote, 9takenote and so on.
That wraps up the section on regular

expression pattern development. Let's take this
new knowledge and apply it to a number of
common patterns.

An Analysis of Some Common Patterns
With the fundamentals of pattern building

under your belt, think about these more popular
general expressions in use today.

US Zip Code (5-digit)
\d{5}
This will match exactly five digits.
US Zip Code (5- or 9-digit)
\d{5}(-\d{4})?
As with the above pattern, the \d{5} will

match exactly five digits. The key to this pattern is
the (-\d{4})?. Working from the inside out you can
see there needs to be four digits preceded by a
hyphen. That pattern is then grouped and a ?
qualifier is applied to it which says that 0 or 1
matching patterns of four digits will work. With
this pattern 27624 and 27624-1234 are both valid.
Slick huh?

U.S. Phone Number (999) 999-9999
((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}
This is one of the patterns I used in the

opening paragraphs. It looked daunting at the
time. It may still look a bit confusing, but at least
you should recognize all of the metacharacters I
used to construct it. Let's break it down into more
manageable parts.

If you start at the end of the pattern you will
find \d{3}-\d{4}. This pattern will match exactly
three digits followed by a hyphen and then
exactly four digits. That part will be responsible
for matching the phone number portion 999-9999
of the string. Now let's focus on the ((\
(\d{3}\) ?)|(\d{3}-))? subpattern. My eye is
drawn to the ? on the end of the subpattern. It will
match 0 or 1 instances of the pattern grouped by
the parenthesis. This means that a phone number
will be a match valid with or without an area
code.

On the right side of the | (or) metacharacter is
the (\d{3}-) pattern. It will match exactly three
digits followed by a hyphen. The right side of the
| is the (\(\d{3}\) ?) pattern. It uses the \
metacharacter to specify that a left parenthesis \
(and a right parenthesis \) are part of the pattern
and should not be considered grouping
metacharacters. Between the \(and the \) is \d{3}
which will match exactly three digits.

So, (555) 123-4567, 555-123-4567, and 123-4567
all match and will be considered valid U.S. phone
numbers. See, that wasn't so bad after all.

U.S. Social Security Number
\d{3}-\d{2}-\d{4}
After that U.S. phone number this one should

be easy. It specifies a pattern of exactly three
digits followed by a hyphen then exactly two
digits followed by a hyphen and exactly four
digits. Strings that match would include 123-45-
6789, 000-00-0000, and 555-55-5555. Notice, these
may not be valid U.S. Social Security numbers but
they do match the pattern.

Date
^\d{1,2}\/\d{1,2}\/\d{4}$
This pattern will match a date in the

99/99/9999 format. Starting from left to right, the
^\d{1,2} subpattern specifies that a number at
least one digit in length but not longer than two
digits must be at the beginning of the string. Next
comes a \/ which makes the / act as a literal
character. Next comes \d{1,2} again, followed by
another \/. Lastly this pattern specifies that
exactly four digits must be at the end of the
pattern.

Offensive Words
(\bBadWord1\b)| (\bBadWord2\b)|...|

(\bbadWordn\b)
This pattern will match any words you

specify as offensive and this pattern makes it easy
to keep unwanted words from making their way
into your data. The \b metacharacter matches any
word boundary, such as a space.

(\bdratsl\b)|(\bshoot\b)|(\bdarn\b)
This pattern will match any text stream that

contains the word drats or shoot or darn.

Table 2 contains a few more commonly used
regular expression patterns.

Basic Credit Card
^(\d{4}[-]){3}\d{4}|\d{16}$
This pattern will match a credit card number

in the format of 9999-9999-9999-9999, 9999 9999
9999 9999, or 9999999999999999. Let's break this
pattern down from right to left. One the right side
of the | (or) we see \d{16} which specifies sixteen
digits. That's pretty straightforward. The left side
of the | (or) looks a bit more complicated. I'll start
with the ^(\d{4}[-]). This specifies a grouped
string of four digits followed by a hyphen or a
space. Next is {3} which specifies that there must
be exactly three 4-digit grouped strings. Next is
the \d{4} which specifies the final four digits.

You may have noticed that this pattern
doesn't validate the number at all or categorize it
by type of card. 4999-9999-9999-9999 is just as
valid as 1999-9999-9999-9999 even though no
credit card starts with the number 1.

Advanced Credit Card
^((4\d{3})|(5[1-5]\d{2})|

(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}$
This is another credit card pattern but this

time we're specifying that the card number must
start with a 4, 5, 6, or 7. This pattern matches all
the major credit cards including Visa which has a
length of 16 and a prefix of 4, MasterCard which
has a length of 16 and a prefix of 51-55, Discover
which has a length of 16, and a prefix of 6011, and
finally American Express which has a length of 15
and a prefix of 34 or 37. All of the 16 digit formats
(Visa, MasterCard, and Discover) accept an
optional hyphen between each group of four
digits.

Let's start with the ^((4\d{3})|(5[1-5]\d{2})|
(6011)). It's not as bad as it looks. The first thing to
notice is that it is one big group with two OR
conditions inside. This group is going to be the
definition for the first four digits of the card. The
string must start with a group comprised of a "4"
followed by exactly three digits (4\d{3}) OR a
group comprised of a "5" followed by a 1, 2, 3, 4,
or 5, followed by exactly four digits (5[1-5]\d{2}),
OR a group comprised of a 6011 (6011).

" You can find out more about the RegEx
Class in the Visual Studio .NET help. "

Next is -?, which means that there can be 0 or
1 hyphens following the initial set of four digits.

Next is \d{4}-?, which refers to the second
group of four digits. It means that exactly four
digits followed by 0 or 1 hyphens are acceptable.

Next is another \d{4}-?, which refers to the
third group of four digits. It, too, means that
exactly four digits followed by 0 or 1 hyphens are
acceptable.

Next is \d{4}, which refers to the fourth group
of four digits. It means that exactly four digits are
acceptable.

Next is the | (or) which signals the end of the
16 digit pattern and the beginning of the
American Express pattern. This pattern,
3[4,7]\d{13}$ means that the string must start
with "34" or "37" followed by 13 digits. In this
pattern, spaces and hyphens are not acceptable in
American Express card numbers.

Using Regular Expressions in Visual
Studio .NET

Now that you've seen the fundamentals of
building a regular expression pattern, and you've
reviewed a number of popular patterns, it's time
to find out how to implement a regular expression
in Visual Studio .NET.

Visual Studio .NET supports regular
expressions in ASP.NET via the
RegularExpressionValidator control and in code
via the RegEx class.

ASP.NET

While there is more than one way to use
regular expressions in ASP.NET, the most
common is to use the RegularExpressionValidator
control.

A developer uses the
RegularExpressionValidator control to make sure
the entry in a watched control conforms to a
specified regular expression. This allows you to
check an entry against a pattern such as a U.S.
Social Security number, telephone number, e-mail
address, etc.

The following snippet lists the HTML for a
RegularExpressionValidator control watching
over a textbox containing U.S. phone number
information.

<asp:RegularExpressionValidator
 id="regPhoneNumber"
 runat="server"
 ErrorMessage=
 "Please enter a valid phone number!"
 ControlToValidate="txtPhone"
 ValidationExpression=
 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}">
</asp:RegularExpressionValidator></P>

The Property window in Figure 1 shows the
regPhoneNumber Control.

Click for a larger version of this image.

Figure 1: The properties for the
regPhoneNumber RegularExpressionValidator
control.

Recognize that pattern? That's the same U.S.
Phone pattern you saw earlier. Fortunately for me
I didn't have to type that into the
ValidationExpression property. I used the Regular
Expression Editor (see Figure 2), which has a
number of pre-built Regular Expressions available
for you to select from including e-mail addresses,
Internet URLs, U.S. Social Security number, U.S.
zip code, as well as international phone and postal
code formats. Of course, you can also develop you
own custom expressions.

Click for a larger version of this image.

Figure 2: The Expression Editor provides a
number of expression templates for you to use.

The System.Text.RegularExpressions
Namespace

In addition to the ASP.NET
RegularExpressionValidator control, you can also
take advantage of the classes contained in the
.NET Framework regular expression engine.
These classes are contained in the
System.Text.RegularExpressions namespace.

The RegEx Class

The RegEx class handles the majority of the
work in the System.Text.RegularExpressions
namespace. The constructor of this class is critical
because it contains the most important element of
a regular expression, the pattern. You can code
the constructor in one of three ways.

'Passing no parameters
RegEx()

'Passing the string pattern
RegEx(pattern)

'Passing the string pattern and option settings
RegEx(pattern,options)

The pattern parameter, if passed, needs to be
a string. The options parameter, if passed, needs
to be a member of the RegExOptions
enumeration.

The RegExOptions enumeration contains the
options that you can set when you create a RegEx
object. IgnoreCase is a commonly used option that
overrides RegEx's default case-sensitivity
behavior. Include this option if you want to have

a case insensitive regular expression. Another
way to specify case insensitivity is to add (?i) to
the beginning of the pattern.

^(?i)[a-z]{3}$

This expression will match abc, AbC, and
ABC.

Since matching is one of the most commonly
performed operations, let's start with it. The code
below determines if you've entered a valid U.S.
phone number into a textbox.

 Dim oRegEx As Regex = New _
 Regex("((\(\d{3}\) ?)|

(\d{3}-))?\d{3}-\d{4}")
 Dim x As Boolean
 x = oRegEx.IsMatch(Me.TextBox1.Text)

 If x Then
 MessageBox.Show("Valid!")
 Else
 MessageBox.Show("Invalid!!!")
 End If

The IsMatch()method returns true if it finds
the pattern in the passed string, false otherwise.
The static version of IsMatch accepts three
parameters: the string passed in, the pattern to
check it against, and the RegExOptions required.

 If Regex.IsMatch(Me.TextBox2.Text, _
 "[a-z]{3}", RegexOptions.IgnoreCase)

Then

Match Object

The RegEx.Match method returns a Match
object that provides detailed information about a
match, including whether or not a match was
found, the value (the text matched), the index
(position in the searched string), and length of the
string matching the pattern.

 Dim SearchString As String _
 = "A cobra is a venomous snake!"
 Dim Pattern As String = "\bve\w*"
 Dim oMatch As Match

 oMatch = Regex.Match(SearchString, _
 Pattern, RegexOptions.IgnoreCase)

 If oMatch.Success Then
 MessageBox.Show(oMatch.Value)
 MessageBox.Show(oMatch.Index)
 MessageBox.Show(oMatch.Length)
 End If

The pattern in the above code will match any
word (note the \b metacharacter) that begins with
"ve". It matches on the word venomous, therefore

oMatch.Success return true. oMatch.Value
contains "venomous," oMatch.Index contains 13,
and oMatch.Length contains 8.

Either RegEx.IsMatch() or Match.Success will
work if you're only looking for a single match.
What if you want to find all of the occurrences in
a string that match the pattern? This is where
NextMatch() comes in.

NextMatch() will return the next match in the
searched string starting from the end of the
current match. You can place NextMatch() inside
a loop to iterate through a searched string to find
all the occurrences of the pattern.

 Dim SearchString As String = _
 "A cobra is a very, very venomous snake!"
 Dim Pattern As String = "\bve\w*"
 Dim oMatch As Match
 Dim MatchHits As Integer = 0

 oMatch = Regex.Match(SearchString, _
 Pattern, RegexOptions.IgnoreCase)

 Do While oMatch.Success
 MatchHits = MatchHits + 1
 oMatch = oMatch.NextMatch()
 If oMatch.Success Then
 MessageBox.Show(oMatch.Value)
 MessageBox.Show(oMatch.Index)
 MessageBox.Show(oMatch.Length)
 End If
 Loop

The previous code will find three matches to
the pattern, starting with the first occurrence of
the word "very." A loop then begins based on the
success of the first match. The NextMatch()
method is called within the loop to find the next
pattern match.

While this technique may work for you in
some circumstances, it has limitations. The
technique doesn't provide a way to index any
match or provide any metadata about the match
set, such as a match count. In a previous example
the code maintained a MatchHits variable
manually.

MatchCollection

If you need the ability to iterate through the
match set, if you need to know how many
matches occurred, or if you need to be able to do
ad-hoc indexing into the match set, then
MatchCollection is the object for you.

 Dim SearchString As String = _
 "A cobra is a very, very venomous snake!"

 Dim oMatch As Match
 Dim oMatchCollection As MatchCollection
 Dim oRegEx As New Regex("\bve\w*")

oMatchCollection =
oRegEx.Matches(SearchString)

MessageBox.Show(oMatchCollection.Count)
 For Each oMatch In oMatchCollection
 MessageBox.Show(oMatch.Value)
 MessageBox.Show(oMatch.Index)
 MessageBox.Show(oMatch.Length)
 Next

The above code does almost exactly the same
thing as the preceding code sample that used
NextMatch(). The difference is that this code uses
the Matches method to create a MatchCollection
object.

Replacement Strings

Replacement does exactly what you expect it
to do?find a piece of text that matches a pattern
and replace it with another.

Dim SearchString As String = _
 "A cobra is a very, very venomous snake!"
Dim Pattern As String = "\bven\w*"
Dim ReplacementString As String = "friendly"
Dim NewString As String

NewString = _
 Regex.Replace(SearchString, Pattern, _
ReplacementString)

The above code will find all occurrences of the
word "venomous" and replace it with the word
"friendly."

The replacement capabilities of regular
expressions are limitless. You could read an
HTML file and remove all of the bold tags (
and) with a simple Regex.Replace() call.

Dim SearchString As String = _
 "A cobra is a very, very venomous

snake!"
Dim Pattern As String = "()|()"
Dim ReplacementString As String = ""
Dim NewString As String

NewString = _
Regex.Replace(SearchString, Pattern, _
ReplacementString,

RegexOptions.IgnoreCase)

This code results in NewString containing "A
cobra is a very, very friendly snake!"

()|()|(<i>)|(</i>)

This pattern expands on the previous example
to remove italics tags as well.

Summary

My goal at the beginning of this article was to
introduce you to the world of regular expressions
and how to use them in Visual Studio .NET.
While they can look complex and overwhelming
to the uninformed, once you break them apart
they're really not that bad to work with and they
provide a powerful tool to add to your
development toolbox.

Resources

You will find plenty of help and resources on
regular expressions on the Web. Here are just a
few of the resources you'll find:

Software

RegExDesigner (freeware)

http://www.sellsbrothers.com/tools/

RegexDesigner.NET is a powerful visual tool
for helping you construct and test .NET Regular
Expressions. When you are happy with your
regular expression, RegexDesigner.NET lets you
integrate it into your application through native
C# or VB .NET code generation and compiled
assemblies (usable from any .NET language).

Web Site

www.regexlib.com

A Web site with an extensive collection of
contributed regular expression patterns. You can
submit your patterns and/or test your patterns
before you implement them with the Regular
Expression Tester.

Books

Mastering Regular Expressions, Second
Edition

Jeffrey Friedl

Regular Expressions with .NET (ebook)

by Dan Appleman

Visual Basic .NET Text Manipulation
Handbook: String Handling and Regular
Expressions

By Paul Wilton, Craig McQueen, François
Liger

There are three categories of differences between
SQLite and VFP SQL. These are (1) language
differences, (2) engine differences, and (3)
implementation differences.

Language differences
The whole point of SQL is to have a standardized
query language that works across platforms,
hardware, languages. Thus, it may come as a
surprise to some that “All SQLs are equal, but
some are more equal than others.”

There are several standard SQL commands
not implemented in SQLite. Furthermore, the
SQLite function set is much smaller than VFP's.

Commands - Joins
Visual FoxPro supports full outer joins. Suppose
you've got a parent table and a child table, such as
Person and Pet, where a Person could have one or
more Pets, but a Pet may or may not belong to a
specific Person. In VFP, you can write a query to
find all Persons with one or more Pets, like so:

select * from person join pet on ;
pet.iidperson = person.iidperson

This pulls only records from Person and Pet
where a Person has a Pet. It ignores the Persons
who are petless as well as the Pets who are strays.

You can also write a query to find all Persons,
whether they have Pets or not, but ignoring
strays:

select * from person left join pet on ;
pet.iidperson = person.iidperson

You can write a query to find all Pets,
regardless if they have an owner or if they're a
stray, but ignoring Persons who don't have a Pet:

select * from person right join pet on ;
pet.iidperson = person.iidperson

And, finally, you can write a query to find all
Persons and all Pets, regardless if they have a
matching record in the other table, like so:

select * from person full join pet on ;
pet.iidperson = person.iidperson

You execute SELECTS like this with SQLite
via SQLEXEC(). (See the March article for details
and multiple examples.) For example,

m.lcXN = "DRIVER={SQLite3 ODBC Driver};" ;
 + "Database=f:\PersonPet;"
liH = sqlstringconnect(lcXN)
=sqlexec(lih, "select * from person ;
 join pet ;

 on pet.iidperson = person.iidperson")

will produce a cursor named “sqlresult” that
can be browsed. This cursor contains all Persons
who have one or more Pets, but no petless
Persons, nor any strays. See Figure 1.

Figure 1. A join executed in SQLite.

Here's the first big difference between VFP
and SQLite: SQLite only supports left joins, not
right or full joins. So you can find out matches,
where there is a Person and a Pet, using a regular
join. You can also find Persons with or without
Pets, like so:

select * from person left join pet on ;
pet.iidperson = person.iidperson

and shown in Figure 2.

Figure 2. A left join executed in SQLite.

In order to find Pets with or without owners,
you can't use a right join:

select * from person right join pet on ;
pet.iidperson = person.iidperson

If you try to execute this, you'll get no
response. Specifically, no 'sqlresult' cursor will be
created, nor will you see an error message.
Instead, if you need a right join, you'll need to
reverse the join syntax, like so:

select * from pet left join person on ;
person.iidperson = pet.iidperson

Not a big deal, but one that can bite you if
you're not aware, and try to use the 'right'
keyword.

Full joins aren't recognized either, but you can
get the same result through a bit of trickery. Since
you're looking for all possible combinations,
you'll need to do a pair of left joins, reversing the
syntax as shown earlier for the second, and then
do a UNION to merge the results:

=sqlexec(lih, "select cnaf, cnal, cnapet ;
 from person left join pet ;
 on pet.iidperson = person.iidperson ;
union ;
select cnaf, cnal, cnapet ;
 from pet left join person ;
 on person.iidperson = pet.iidperson")

The first left join finds all Persons with or
without pets; the second finds all Pets with or
without owners. The UNION clause merges the
two interim result sets and removes the
duplicates. Unfortunately, as shown in Figure 3,
the UNION trickery causes each field to be
converted to a memo field in the cursor, so you
may need to do more work, depending on your
ultimate goal.

Figure 3. Fooling SQLite into doing a full join.

Commands – Alter Table
The other big difference is that VFP's Alter Table
command is much more robust.

In VFP, you can:

 add a new column,

 change an existing column,

 delete (drop) a column,

 rename a column,

 add a candidate index,

 delete (drop) a candidate index,

 add a primary key,

 delete (drop) a primary key,

 add a foreign key,

 delete (drop) a foreign key,

 set a check (validation rule), and

 set an error message if a check
fails.

Additionally, columns can:

 be set to be auto-incremented,

 have a default value,

 be prevented from being
translated to a different code page.

By contrast, SQLite's Alter Table functionality
rather limited. You can:

 rename a table

 add a column

Let's take a look. Suppose we realized we needed
another table in our Person/Pet database for all of
the paraphernalia associated with taking care of a
critter. We add a table called 'gear' to the
database. Not sure what fields we need yet, we
just define a single primary key:

=sqlexec(lih, "create table gear (iidgear
bigint)")

And prove that it worked:

=sqlexec(lih, "insert into gear (iidgear)
values (1)")

Of course, as soon as we hit the Enter key, the
realization that we needed a descriptor hit, so we
used Alter Table to add the new column:

=sqlexec(lih, "alter table gear add column
cdesc char(20)")

And it works just fine:

=sqlexec(lih, "insert into gear (iidgear,
cdesc) values (2,'leash')")

There was already a row in the table without
a value in the cdesc field, so let's take care of that
as well:

=sqlexec(lih, "update gear set cdesc =
'sweater' where iidgear = 1")

Time passes, and we decide that we preferred
a different name for the 'gear' table. So we'll
rename it to 'equipment', like so:

=sqlexec(lih, "alter table gear rename to
equipment")

Unfortunately, THEN we discover that we
can't rename columns in a SQLite table, so the
primary key, iidgear, is now a misnomer, so we
rename the table back:

=sqlexec(lih, "alter table equipment rename to
gear")

And all is good.
There are other differences between SQLite's

implementation of SQL and the full language, but
these two (Join, Alter Table) that most VFP
developers need to be concerned with.

Functions
SQLite has 32 functions. Visual FoxPro has more
than 32 that start with the letter 'A'. (Seriously!
Check it out!)

As a result, there is a great disconcordance
between SQLite and VFP's function set. A few in
SQLite don't map to any in VFP, and a great many
in VFP don't have correlations in SQLite.

More importantly, there are a few that do
match up, albeit sometimes inexactly. It's handy
to have a chart of how those do match up, and
what gotchas exist. See Table 1.

Table 1. Mapping of VFP and SQLite functions.

VFP SQLite Comments

abs abs Returns absolute value of
argument.

coalesce
ifnull

Returns first non-NULL
argument.

len length Returns lengths of
argument.

lower lower Returns lower case version
of string argument.

ltrim ltrim Returns string after
removing spaces from left
side of string. (SQLite
version has additional
functionality.)

max max Returns largest argument.
Serves as an aggregator
with only a single argument.

min min Returns smallest argument.
Serves as an aggregator
with only a single argument.

nullif Returns first argument if the
arguments are different and
NULL if the arguments are

the same.

rand random Returns a pseudo random
integer. Range differs
between VFP and SQLite.

strtran replace Returns a string formed by
substituting string Z for
every occurrence of string Y
in string X.

round round Returns the first argument
rounded to the # of digits
defined in second
argument.

rtrim rtrim Returns string after
removing spaces from right
side of string. (SQLite
version has additional
functionality.)

soundex soundex Returns the Soundex
encoding of the argument.
Only available in SQLite if
SQLITE_SOUNDEX
compile time option is
turned on.

substr substr Returns a substring of input
string X that begins with the
Y-th character and which is
Z characters long.

trim trim Returns string after
removing spaces from both
left and right sides of string.
(SQLite version has
additional functionality.)

vartype typeof Returns data type of
argument. VFP: “C”, “N”,
“D”, etc.
SQLite: "null", "integer",
"real", "text", or "blob".

upper upper Returns upper case version
of string argument.

In order to practice with these functions, you
can send dummy SELECT statements to SQLite,
using the function as the only argument, like so:

=sqlexec(lih, "select abs(-4)")

This will return a cursor with a single row, as
shown in Figure 4.

Figure 4. Practicing with SQLite functions.

With that technique in hand, let's look at the
functions listed in Table 1 in more detail.

abs(X)
Works the same in both VFP and SQLite.

coalesce(X, Y, Z...), ifnull(X, Y)
Returns the first non-NULL argument in the

argument list, or NULL if all arguments are
NULL. Ifnull() is the same as coalesce() but with
exactly two arguments.

len/length(X)
Difference function names for the same

functionality – returning the length of the string
passed as an argument. The following query:

=sqlexec(lih, "select *, length(cdesc) ;
 from gear")

produces the result set shown in Figure 5.

Figure 5. Results of the length() function.

lower(X)
Works the same in VFP and SQLite.

ltrim(X)
Works the same in VFP and SQLite.

max(X,Y), max(X)
Works the same in VFP and SQLite. When

passed multiple arguments, returns the largest:

=sqlexec(lih, "select max(1,2,3,7,200,6,-4)")

The result is shown in Figure 6.

Figure 6. Passing multiple arguments to max().

However, when passed a single argument
that is a numeric column in a table, the function
returns the value in the row with the largest
value:

=sqlexec(lih, "select max(iidgear) from gear")

The result is shown in Figure 7.

Figure 7. Passing a single argument to max().

min(X, Y), min(X)
The min() function works identically to max()

except that it returns the lowest value.

nullif(X, Y)
In the same ballpark as coalesce() and ifnull(),

this one returns the first argument if the
arguments are different and NULL if the
arguments are the same.

rand/random()
Works nearly the same in VFP and SQLite.

The range of values that the random number is
pulled from varies.

In VFP, the random number is a decimal
between 0 and 1. It can contain up to 14 decimal
places, so when multiplied by a power of ten in
order to produce an integer, random numbers
available range from 1 to approximately 400
quadrillion.

In SQLite, the random number ranges from
approximately -9223 quadrillion to +9223
quadrillion.

Additionally, the VFP rand() function can be
seeded with an argument in order to change the
start of the random number sequence generated.

rtrim(X)
Works the same in VFP and SQLite.

strtran/replace(X,Y,Z)
Returns a string formed by substituting string

Z for every occurrence of string Y in string X. For
example,

=sqlexec(lih, "select *,
 replace(cdesc,'a','A') as cdescA from gear")

will return 'collAr' from a field that contains
'collar'. This is the same functionality as 'strtran()'
in VFP.

round(X,Y)
Works the same in VFP and SQLite.

soundex(X)

Soundex is an algorithm for encoding strings
as they are pronounced in English, so that words
that are spelled differently but sound the same
('homophones') can be compared and sorted.

Soundex is a function contained in all major
SQL databases, including Oracle, Microsoft SQL
Server, MySQL, and, of course, SQLite and Visual
FoxPro. As such, the implementation is the same
in both VFP and SQLite. Figure 8 shows the
results of selecting the soundex value of the cDesc
field from the gear table in both SQLite (top) and
VFP (bottom.)

=sqlexec(lih, "select *,
 soundex(cdesc) from gear")
select *, soundex(cdesc) from gear

Figure 8. Soundex() results in SQLite and VFP.

Note that Soundex() may not be part of the
native SQLite implmentation – it is only available
if the SQLite complile-time option,
SQLITE_SOUNDEX, is set when the SQLite
exectutable is built. Soundex() is part of the
SQLite ODBC driver.

substr(X,Y,Z)
Works the same in VFP and SQLite. Returns a

string selected from the string X that begins with
the Yth character and that is Z characters long.
Thus,

substr('Visual Fox Pro', 8, 3)

returns 'Fox'.

trim(X)
Works the same in VFP and SQLite.

vartype/typeof(X)
Returns the type of data passed in the

argument. VFP returns a single upper case
character that maps to the data type (for example,
“C” for Character or Memo, D for Date.) See the
VFP Help file for the complete list. SQLite returns
one of the following text strings: “null”, “integer”,
“real”, “text” or “blob”. The SQLEXEC()
command produces the top half of Figure 9 while
the SELECT command produces the bottom half
of Figure 9.

=sqlexec(lih, "select *, ;
 typeof(cdesc) from gear")
select *, vartype('cdesc') from gear

Figure 9. Comparing SQLite's typeof() and VFP's vartype()
functions.

upper (X)
Works the same in VFP and SQLite.

Engine differences
Some SQLite functions don't have any direct
matches with VFP. See Table 2 for a listing, plus a
brief description of what they do.

Table 2. SQLite functions with no corresponding function in
VFP..

SQL Function Description

changes Returns the number
of rows in the
database that were

affected by the last
successful INSERT,
DELETE or
UPDATE statement.

glob Returns the number
of rows where Y is
“like” X.

hex Returns the upper-
case hexidecimal
translation of the
argument.

last_insert_rowid Returns the row ID
of the last row
inserted into the
database.

like Returns patterns of
the type Y matching
the argument X.

load_extension Strictly not a
function, as it
doesn't return a
useful value. Simply
loads a SQLite
extension.

quote Returns a string that
is translated so that
it can be included in
a SQL statement.

randomblob Returns a string of
N random bytes.

splite_compileoption_get
splite_compileoption_used

Wrappers around
the get and used
functions.

sqplite_source_id Returns a string that
contains the version
of the source code
used to build the
SQLite library.

sqlite_version Returns a string that
contains the version
of the SQLite library
that is running.

total_changes Returns the number
of changes made by
the INSERT,
DELETE and
UPDATE
statements since
the database
connection was
opened.

zeroblob Returns an empty
BLOB N bytes long;
used to reserve
space for a BLOB.

Engine differences
The key engine difference between VFP and
SQLite is that SQLite data types are dynamic. In
VFP, a column is defined as a specific data type
(such as character or date), and from then on, only
that type of data can be put into that column.

In SQLite, the data type can change within a
column; row 1 can contain a date value while the
same column in row 2 can contain a numeric
(“integer”) or a character (“text”) value.

Data types are organized into “storage
classes”. For example, the integer storage class has
six data types – depending on the size of the
integer (one byte long, two bytes long, all the way
up to eight bytes.) The differences between
various data types are for all practical purposes
transparent to the user.

Implementation differences
The key implementation difference between VFP
and SQLite is that the latter is not multi-user.
Multiple users can read from the database, but
only one can write. This is because when SQLite
writes to the database, it locks the entire database.

As a result, unlike other SQL databases that
are inherently multi-user (via locks placed on
single records), only a single user can access the
database at a single time.

Thus, SQLite is best used for three groups of
applications:

- with only one user. This user may be an
interactive user in the case of a desktop
application, or the Web user in the case of a Web
application.

- with multiple read-only users but only one
user who will write to the database.

- with more than one regular user who is
writing to the database, but where the lock of the
database during writes doesn't pose a problem,
because a second attempted write can be detected
and handled.

Source code:
Source code for this article is contained in two
files. The first contains the VFP tables for Person,
Pet and Gear. The second contains the SQLite
database, PersonPet, which contains all three
tables.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

	Another Boring Article About Regular Expressions
	Author Profile
	Author Profile

