
Case Study: Using SQLite
to break the 2GB Barrier
Whil Hentzen

“We need to get away from DBFs” is a refrain I
hear regularly from fellow developers. Be it due
to perceived instability of the file format, the need
for tables larger than 2 GB, or the result of
political machinations, the result is the same – a
desire to move to a SQL database back-end.
SQLite can be an excellent intermediate step – and
possibly the final word - in the process of
restructuring your application to talk to a SQL
back-end.

In previous articles, I've helped you dip your toe
into the SQLite pool, in preparation for using it as
an application backend. In this article, I'm going
to take a different direction and show you how I
used SQLite to help a customer deal with an
external data source that, in its latest release, had
become too big to import into a VFP table.

My customer, we'll call him 'Al', has been
downloading a data set full of demographic data
from a government website and importing it into
VFP for the better part of 15 years. As with many
things data-related, this data set has been growing
over the years, but just marginally.

Problems, Schmroblems
The latest release, however, was chock full of
changes.

First, the previous releases consisted of
hundreds of text files, each for a specific
geographical region. Each file was between a half
megabyte and two megabytes in size. The latest
release combined all of those hundreds of files
into a single file.

Second, the tables used to contain lookup
codes used to identify a variety of descriptors, like
so:

GeoID Region H1 H2 …
310M100US28180 71 213 160

Code Description
71 Southeastern Arizona, excl. Carlsbad

The latest release used the full text descriptors
instead of the foreign key to a lookup table that
contained the full description:

GeoID Region H1 …
310M100US2818
0

Southeastern
Arizona, excl.
Carlsbad

213

Besides the expected issues with
denormalized data, using full descriptors instead
of foreign keys when you're dealing with millions
of rows produces a lot of wasted space. A LOT.

Finally, in previous releases, just raw values
were included. In the latest release, calculate
values were included – both grand totals as well
as percentages. For example, the raw data would
include values for age groups:

< 15 16-19 20-24 … 75
109 621 539 57

The latest release also included totals for
ranges:

Child
< 20

Adult
20-59

Senior
60+

Total

730 12558 808 14096

It also included percentages, like so:

< 15 16-19 20-24 … 75
0.01 0.04 0.04 0

As a result, there was a significant superfluity
of columns.

Additionally, the totals didn't add up (that's
the government for you), but that simply meant
that we wanted to discard those columns more
than ever.

As a result of these changes, he had one file to
work with, and it was suddenly much larger than

the combined text files in the previous release. On
the order of three times as large – from a
collection of files that totaled just over a gigabyte
to a single file now well over three gigabytes. And
we all know that VFP doesn't play well with
tables of that size.

The Solution
Of course, a three gigabyte table is child's play for
SQL databases like Microsoft SQL Server, MySQL
or PostgreSQL. But Al was only interested in a
subset of the data set, and so. This was a one-time
use, just to parse the data he wanted out of the
original file. Thus, it didn't make sense to deal
with the infrastructure and learning curve of one
of those applications. He simply wanted to grab a
subset of the data, normalize it, and stuff it into
his own application.

Enter SQLite.
Our plan was to (1) create a database and a

single table in SQLite according to the data
definition that was included with the data set
itself, (2) import the text file, and then (3) extract
the subset of the data that we were interested in –
just the raw columns, no totals – and normalize
the lookups again.

The first and third steps would be done with
VFP. Connecting to SQLite and manipulating data
has been discussed in Part One of this series,
Getting Started. The second step would use the
SQLite .import command as has been discussed in
Part Three of this series, Inserting Large Amounts
of Data.

Step 0. Preliminaries
The following were needed to perform this
process.

1. Standard Visual FoxPro installation. See my
article, Setting up VFP 9, in the May/June 2013
issue of FoxRockX.

2. SQLite ODBC driver. See my article,
Getting Started with Client-Server with SQLite in
the March/April, 2012 issue of FoxRockX. The
latest version as of this writing is 0.993, released
on May 23, 2013.

3. The SQLite engine, SQLITE3.EXE, available
at sqlite.org. For the purposes of this article, this
file will be located in the root of drive F. You can
just copy this file to this location after
downloading; no installation routine or
configuration process is needed. The latest version
as of this writing is 3.7.17, released on May 20,
2013.

4. The three gigabyte census text file, also
located in the root of drive F. The text file's fields
are delimited with pipes, like so:

AAA|BBB|123|1000|24.7|LASTFIELD

Step 1. Create a SQLite database
and table
The data definition described a file layout that
consisted of four groups of columns. The first
group contained the descriptors for the row,
maybe a half-dozen columns. The next three
groups were identical, a series of counts for
various sectors for males, for females, and then
the combined totals of males and females.

There were 194 columns in the table. No one
wants to type a CREATE TABLE with 194 column
definitions. Not even I.

So instead of typing a long statement in the
SQLite interface, I used VFP to create the CREATE
TABLE string, and then executed that command
via SQL Passthrough to create the table in the
SQLite database.

In the examples that follow, I'm
demonstrating the code but using an abbreviated
set of columns. For example, for the first group, I
am only showing two columns, not all six.

First, I created the leading fields:

local lcStr
lcStr = 'create table ALLDATA ';
+ ' (geoid c(14), occ c(5)'

Next, I created a series of fields of the form
'b01e' and 'b01m', 32 of each, where 'b' stands for
'both genders', the 'e' columns contains the
estimated value and the 'm' column contains a
percentage that is the margin of error for the
estimate.

for li = 1 to 32
 lcStr = lcStr ;
 + ', ' ;
 + 'b' + padl(allt(str(li)),2,'0') + 'e ' ;
 + 'n(8)' ;
 + ', ' ;
 + 'b' + padl(allt(str(li)),2,'0') + 'm ' ;
 + 'n(8,2)'
next

Next, I repeated that code for both the male
and female counts:

for li = 1 to 32
 lcStr = lcStr ;
 + ', ' ;
 + 'm' + padl(allt(str(li)),2,'0') + 'e ' ;
 + 'n(8)' ;
 + ', ' ;
 + 'm' + padl(allt(str(li)),2,'0') + 'm ' ;
 + 'n(8,2)'
next

for li = 1 to 32
 lcStr = lcStr ;
 + ', ' ;
 + 'f' + padl(allt(str(li)),2,'0') + 'e ' ;
 + 'n(8)' ;
 + ', ' ;
 + 'f' + padl(allt(str(li)),2,'0') + 'm ' ;
 + 'n(8,2)'
next

Finally, I closed the list of fields:

lcStr = lcStr + ')'

Now that the string has been assembled,
connect to SQLite:

liH = sqlstringconnect(;
 "DRIVER={SQLite3 ODBC Driver};" ;
 + "Database=f:\eedb;")

And execute the command, displaying
success or failure in a messagebox (SQLEXEC
returns a positive number for success and -1 for
failure.):

liResult = sqlexec(liH, lcStr)
messagebox("Create Table result:" ;
 + str(liResult))

At this point, we've got an empty table called
ALLDATA in the EEDB database located in the
root of drive F.

The next step is to import the text file into the
table.

Step 2. Import the data
After closing VFP (so that SQLite had exclusive
use of the table), I opened up SQLite by double-
clicking on the SQLITE3.EXE item in my file
manager, producing a DOS window with a
prompt:

sqlite>

Open the database:

sqlite> attach database EEDB as EEDB;

and import the three gigabyte text file,
EEALL.DAT, into the ALL DATA table:

sqlite>.import eeall.dat ALLDATA

At this point, the table has all the rows. Os so
you would think.

More Schmroblems
As luck would have it, the data definition file that
came along with the data set was, um, shall we
say, a little bit behind the times. Unfortunately,
the table had 195 columns. More bluntly, it wasn't
right. To save you the trouble of having to skip to
the end of our story and find out that the butler
didn't do it, the data definition file described a
layout with one fewer columns than the actual
data file contained.

Thus, I had created a 194 column table
according to the data definition. When I tried to
import the 195 column text file into the table,

SQLite responded with the unexpected but
perfectly reasonable

Error: eeall.dat line 1: expected 194 columns
of data but found 195

message. This is saying that the SQLite table
was defined with 194 columns, and thus was
expecting an input table of 194 columns, but the
incoming table had 195. Really? It's like serving a
Pinot Grigio with a side of raw cow.

So I was left with a three gig file whose
format was unknown. Purists would argue that
this is a moot point. One of the advantages of
SQLite is that the data type included in field
definitions is simply a suggestion - I could have
just added a 195th dummy field to the table and
the import would have imported the file,
regardless of whether the data types in the file
matched the data types in the definition, just fine.

But we wanted to know what the data looked
like – we were eventually going to have to work
with it in such a fashion that the data types
would be important. The easiest way would be
to open this text file in a text editor. Sure, easy....
except, it was a three gigabyte text file. Not so
easy. Most text editors will choke on a file of that
size, and one or two will even bring down
Windows itself.

We're gonna need a bigger boat.

Another tool for our toolkit
Spelunking around the Web produced not only
dozens of pictures of adorable kittens, but also a
number of promising but ultimately
unsatisfactory results, until I came across the
magic “UltraEdit”.

Packed with more features than Microsoft
Word, the feature of UltraEdit I was most
interested in is its capability to handle very, very
(very, very, very) large files. It natively handles
files over four gigabytes via disk-based handling
on both 32- and 64-bit Windows.

So I cracked open a copy of UltraEdit and
opened this three gigabyte file so I could examine
the data itself. Turns out that the one-off error was
in the first few columns. The data definition
contained this:

geoid c(14), occ c(5)

while the data itself contained:

geoid c(14), geoidsp c(14), occ c(5)

Mystery solved. I changed the command to
create the leading fields like so:

local lcStr
lcStr = 'create table ALLDATA ';

+ ' (geoid c(14), geoidsp c(14), occ c(5)'

And a few seconds later, had a 195 column
table named ALLDATA in the EEDB SQLite
database.

Running the .import command a second
worked perfectly, and 5 minutes later I had a
SQLite table with 2,570,751 rows in it:

sqlite> select count(*) from ALLDATA;
2570751
sqlite>

Yes, SQLite imported a 195 column, two and a
half million row text file in under five minutes.

(Side note: while the .import command didn't
need a semi-colon to execute it, the SQL command
SELECT did.)

Step 3. Preparing a test table for
slicing and dicing the data
You would think that the next step was to create a
series of SELECTS in VFP that would extract the
data that Al and I wanted. (Remember Al? This
project is for Al.)

However, given that this is a 2.5 million row
table, it behooves us to think about what we want
to accomplish. Yes, VFP is fast, but not THAT fast
that an errant operation on the table could bring
our machine to its knees for a while.

A better solution is to create a small subset of
the table, say, a dozen or maybe a hundred rows,
and test our slicing and dicing on that table first.

The first step is to create a second table, say,
SOMEDATA, in EEDB, using the same code
described in Step 1, except changing the first line
of the create table statement from

create table ALLDATA

to

create table SOMEDATA

After executing the SQLEXEC on this changed
statement, the SQLite database EEDB contains
two tables, ALLDATA and SOMEDATA. Next,
how to get a few rows into SOMEDATA?

One way is to create a second text file that
only contains the rows of interest, say,
EESOME.DAT, and import it into SQLite with
the .import command, just like we imported
EEALL.DAT. To do so, open the file in our new
best friend, UltraEdit, highlight the rows of
interest, copy them, open a new editing session,
paste, and, finally, save as EESOME.DAT. Be sure
to include the carriage return at the end of the last
row to be included in the new file.

With our new miniature text file, execute the
following commands in SQLite:

sqlite>
sqlite> attach database EEDB as EEDB;
sqlite>.import eesome.dat SOMEDATA
sqlite> select count(*) from SOMEDATA;
101
sqlite>

While certainly expedient, doing the cut and
paste routine probably offends a little bit of each
of us, and doesn't teach us much either. Now that
we've got our empty SOMEDATA table in EEDB,
let's write a bit of code that copies some rows
from ALLDATA to SOMEDATA.

The approach goes like this: Select a few
records from ALLDATA into a temporary cursor,
then go through that cursor record by record and
do a SQL-INSERT to stuff them into the
SOMEDATA table.

Here's the p-code. First, select a few records
from ALLDATA:

select * from ALLDATA where (condition)

where the “condition” retrieves a limited
number of rows. In this case, a single value in the
geoid field matches about 400 rows:

lcStr = "select * from alldata " ;
 "where geoid = '310M100US10500'"

Next, stuff those records into a temporary
cursor, in this case named 'csrTmp':

sqlexec(liH, lcStr,' csrTmp')
select csrTmp

Third, construct a string that contains the field
names. (We can't just use the field string created
for the CREATE TABLE command because we
don't want the field type and length clauses.) We
only have to create this string once, because it
won't change record by record, while the values
will.

lcStrFields = 'geoid, geoidsp, occ'
for li = 1 to 32
lcStrFields = lcStrFields ;
 + ', ' ;
 + 'b' + padl(alltrim(str(li)),2,'0') + 'e' ;
 + ', ' ;
 + 'b' + padl(alltrim(str(li)),2,'0') + 'moe'
next

The for/next segment is repeated, replacing
the 'b' with 'm' and 'f'. Next, spin through the
cursor

select csrTmp
scan
lcStrValues ;
 = "'" + alltrim(geoid) + "'," ;
 + "'" + alltrim(geoidsp) + "','" ;

 + alltrim(occ) + "'"
for li = 1 to 32
 lcStrValues = lcStrValues ;
 + "," ;
 + "'" ;
 + allt(eval('b' + padl(li,2,'0') + 'e')) ;
 + "'," ;
 + "'" ;
 + allt(eval('b' + padl(li,2,'0') + 'moe')) ;
 + "'"
next

and again, repeat the for/next segment,
replacing the 'b' with 'm' and 'f'.

Finally, build the INSERT command and
execute it:

 lcStrIns ;
 = "insert into SOMEDATA " ;
 + "(" + lcStrFields + ") " ;
 + " values " ;
 + "(" + lcStrValues + ")"
 liResult = sqlexec(liH, lcStrIns)
endscan

We now have a subset of ALLDATA in
SOMEDATA. We're ready to experiment.

Naming conventions
So Al and I have both a small data set that we can
experiment with and the complete data set, both
in the EEDB database. What next?

As you well know, any time you experiment
with data extraction and manipulation, you end
up with dozens of programs named MAIN,
MAIN1, MAINOLD, TEST, DELETEME, and so
on. Of course, they're all perfectly commented, so
it's easy to keep track of which program does
what, right?

You also end up with a folder full of data
files. Some are the results of preliminary tests,
others are intermediate results, generated during
a multi-step process, and others are the output
desired. Sure, it's possible to create a folder
structure where different categories of files are
stored in their own folders, but for a quick and
dirty project like this, that's likely overkill.

Pretty soon you lose track of which files are
good and which are garbage. So let's create a
naming scheme up front.

One way to go about this is to define the file
categories, and name each file according to which
they belong to. We'll have four categories of files:

• Input (masters)

• Processing (temporary)

• Intermediate results

• Output files

So a logical naming scheme could include
some type of semaphore to indicate which
category a file belongs to.

We'll also have several types of files – the
original text files (.DAT extension), the SQLite
database file (no extension), and, of course, a
variety of VFP tables (.DBF extension.) Programs
will have .PRG extensions.

Another possible consideration when naming
is using a scheme so they're in alphabetical order
when you view them in your file manager. Some
of us are picky like that.

Here is the scheme we came up with.
Since some of these files will likely end up in

another folder, say, as part of the application
they're ultimately to be used with, it makes sense
to start the filenames similarly. In this case, since
these files are employee demographics, I start
each file with “EE”. They'll be nicely grouped
when they end up in another folder.

Second, the first files we worked with, the
SQLite database and the original text files, have
simple names:

EEDB
EE100.DAT
EEBIG.DAT

For the files that we know we'll want to keep
(the end results), starting the filenames with “EE”
and ending with strings later in the alphabet
provides a visual clue that these files are in order
of use and production. Before we actually do the
work, we think we'll end up with two files, the
master data table and a child lookup table:

EEDB
EE100.DAT
EEBIG.DAT
EELOOKUP.DBF
EEMASTER.DBF

Now, what to do with the temporary and
intermediate files?

I've always named temporary files, ones that
are used for an instant and can then be instantly
discarded, with the string “DELME” (for
DELeteME) as the beginning of the name. That
way, whenever I come across a folder with a
DELME file in it, I know I can get rid of it without
even looking at it.

Intermediate files, I'm going to argue, are
similar in nature if they're constructed correctly. A
processing program should always be re-
runnable, never in danger of stomping over
valuable files. As such, naming them along the
same lines as “DELME” means that you know
they can be deleted when you no longer need
them. So, for instance names like:

EEDELME_JUSTTOTALS.DBF
EEDELME_GENDERGROUPS.DBF

and so on provide visual clues that these files
are intermediate but can be discarded when
desired. Most file managers allow you to search
for files that contain a string in the middle of the
filename, making their identification for later
elimination trivial.

Step 4. Slicing and Dicing
Slicing and dicing a table involves selecting just
certain columns and certain rows out of a table.
Selecting a subset of columns is simple; just
include the columns of interest in your SELECT
statement. Selecting rows, however, can be
considerably more complicated.

When you began using Fox (or dBASE, if your
roots started there), you likely went through a
learning phase with respect to syntax. For
instance, you learned that

browse for lastname = 'Carl'

would pull out only last names that began
with that exact string. Last names that started
with “Car” or “CArl” or “carl” weren't included
in the result set. You learned to do things like

browse for upper(lastname) = 'CARL'

for instance. When matching on a variable,
you learned to trim the value of the variable, so
that you didn't accidentally do something like
this:

lcValue = myform.somefield
browse for upper(lastname) = upper(lcValue)

where somefield was 25 characters wide, and
since this meant you were searching for

'CARL '

you didn't find any get any hits for 'Carlson'
or 'Carlsbad'.

You'll go through the same learning curve
when matching with SQLite matching. The short
explanation is that the same syntax you're used to
using with Fox doesn't always translate to SQLite.
Let's take a look at how to select character strings,
numeric values, dates, and logical values.

Matching character strings
Matching an exact string works fine:

select * from TABLE where gender = “MALE”

does just what you would expect it to.
However, partial matching of strings doesn't
work.

select * from TABLE where gender = “M”

returns zero records, even when there are
records that contain “MALE” in the gender field.

Instead, you need to use the SQLite “LIKE”
operator along with the “%” wildcard, like so:

select * from TABLE where gender like 'M%'

You can also precede the character string with
a wildcard in order to search for a string in the
middle of the field, like so:

select * from TABLE where name like '%mith%'

This would find Pmith (the 'P' is silent),
Smith, Smithson, and mithfortune.

Sometimes, though, just using a wildcard isn't
what you want. SQLite parses the upper() and
lower() functions properly, like so:

select * from TABLE ;
 where upper(name) like 'SMITH%'

In order to pull a certain number of characters
out of a string, use substr(), just like you would in
Fox:

select * from SOMEDATA ;
 where substr(geoid,10,4) = '1000'

SQLite doesn't have left() and right()
functions; use substr() and just the search with the
first character, like so:

select * from SOMEDATA ;
 where substr(geoid,1,5) = '12345'

Now let's look at other data types.

Matching numeric values
Numbers, on the other hand, are easy. Easy-
peasy, in fact, because SQLite allows for all sorts
of room for error.

There's a column in the table named B01E that
contains numeric values. The following statement
will pull out all rows that contain the value 15 in
that column:

select * from SOMEDATA where b01e = 15

But it gets better. Suppose you thought that
the column contained character values? The
following statement will also work:

select * from SOMEDATA where b01e = '15'

In fact, it simply doesn't matter if you search
for a numeric or character string, or if the column
is defined as numeric or character – all
combinations work.

In order to get a range of values, concatenate
expressions with AND:

select * from SOMEDATA where b01e >= 15 ;
 and b01e <= 25

or OR:

select * from SOMEDATA where b01e <= 10 ;
 and b01e >= 1000

Matching dates
Date values are stored as strings in SQLite, so you
don't have to mess around with any translations
from one data type to another.

select * from TESTDATA ;
 where dob = '2013-07-01'

will retrieve all rows where Date of Birth is
the first of July of this year. Since the date strings
are stored in CCYYMMDD format, you can select
ranges, like so:

select * from TESTDATA ;
 where dob < '2012-01-01'

to find all records with a Date of Birth in 2011
or earlier. Nor do you have to use date functions
like month() or year(). Rather, substr() is your
friend. To get all records for the month of June,
regardless of year:

select * from TESTDATA ;
 where substr(dob,6,2) = '06'

Matching logical values
Like numerics and dates, logical values are stored
as strings, either T/F or 1/0. Thus, selecting
records is as simple as

select * from TABLE where alive = “T”

or

select * from TABLE where alive = 1

Now that we have the ability to select data of
any field type, let's put it all together.

Step 5. Automating access via a
SQLEXEC() shell
As you find yourself issuing the same series of
commands over and over, you'll wish there was a
better way. Most people begin by creating a series
of programs, one to create the table, another to
“drop” it after it gets munged and needs to be
cleaned up, a third to issue a SELECT of one form
or another. Then more programs to run additional
SELECTS.

Eventually one ends up with that
aforementioned collection of MAIN.PRG,
MAIN1.PRG, SELECTDATA.PRG,

SELDATA2.PRG, and so on – just as bad as the
collection of result set files described earlier.

Since all of these programs have a lot of
statements in common, I've tended to using a shell
that contains common elements, and calls out to
custom elements as needed. For example, let's
look at the three functions mentioned above,
creating a table, dropping it, and selecting data
from it.

All three start out the same way – creating a
connection:

liH = sqlstringconnect(;
 "DRIVER={SQLite3 ODBC Driver};" ;
 + "Database=f:\eedb;")

After assembling a custom command, each
program executes the command, using the handle
created:

liResult = sqlexec(liH, lcStr)
messagebox("Create Table result:" ;
 + str(liResult))

Some optionally pass a cursor name:

lcStrCursor = 'csrEErows'
liResult = sqlexec(liH, lcStr, lcStrCursor)

And each finishes up by closing the
connection:

? sqldisconnect(liH)

As a result, you can build a single program
that uses each of these statements just once. Then,
pass a parameter to the program that indicates
which custom routine is to be executed.

* sqlshell.prg

lpara lcWhatToDo
* lcWhatToDo = 'C' && create
* lcWhatToDo = 'I' && insert
* lcWhatToDo = 'SC' && select count
* lcWhatToDo = 'SR' && select rows
* lcWhatToDo = 'D' && drop table

if pcount() < 1
 messagebox(“Must pass a parm.”)
 return
endif

liH = sqlstringconnect(;
 "DRIVER={SQLite3 ODBC Driver};" ;
 + "Database=f:\eedb;")

if liH < 1
 messagebox(“Connection failed.”)
 return
endif

lcStr = z_createStr(lcWhatToDo)

do case
case lcWhatToDo = 'C'
 lcDesc = 'Create Table'
 lcNaCursor = ''
case lcWhatToDo = 'SC'

 lcDesc = 'Select Count'
 lcNaCursor = 'csrEEcount'
case lcWhatToDo = 'SR'
 lcDesc = 'Select Rows'
 lcNaCursor = 'csrEErows'
case lcWhatToDo = 'D'
 lcDesc = 'Drop Table'
 lcNaCursor = ''
endcase

lnSec1 = seconds()
liResult = sqlexec(liH, lcStr, lcNaCursor)
lnSec2 = seconds()
lcElapsed = str(lnSec2-lnSec1,10,3)

messagebox(lcDesc + ' result:' ;
 + str(liResult) + ' in ' ;
 + lcElapsed + ' sec.')

? sqldisconnect(liH)

return

The z_createStr() function called before the
DO CASE code segment encapsulates the detailed
work of building the SQL command for each
specific case.

function z_createStr(lcWhatToDo)

local lcStr, li, lcVal

do case
case lcWhatToDo = 'C'
 (code for the 'create table' string)

case lcWhatToDo = 'I'
 (code for the 'insert' string)

case lcWhatToDo = 'SC'
 (code for the 'select count' string)

case lcWhatToDo = 'SR'
 (code for the 'select rows' string)

case lcWhatToDo = 'D'
 (code for the 'drop table' string)

endcase

return lcStr

Then, to run this program, simply execute

do sqlshell with 'C'

or whatever parameter you wish. The shell
takes care of all of the setup and shutdown every
time, and doesn't leave a lot of garbage around
after you're done processing.

A hidden advantage to
SQLSHELL
The SQLSHELL introduced in the last section is
good for more than minimizing file cruft. It can
also be used as the starting point to creating a
front end for making access to SQLite data more
VFP-like - that is, typing commands into a
Command Window and getting results back.

Consider passing not a flag that identifies which
type of hard-coded statement should be executed,
but passing the entire SQL statement.

* sqlshell.prg

lparameters lcStr
if pcount() < 1
 messagebox("Need to pass a parm.")
 return
endif

local liH, lcStr, lcDesc, lcNaCursor, ;
 liResult, lnSec1, lnSec2, lcElapsed

liH = sqlstringconnect(;
 "DRIVER={SQLite3 ODBC Driver};” ;
 + “ Database=f:\eedb;")

if liH < 1
 messagebox("Connection failed.")
 return
endif

lcDesc = substr(lcStr,1,at(' ', lcStr, 2))
lcNaCursor = 'csrEEtest'

lnSec1 = seconds()
liResult = sqlexec(liH, lcStr, lcNaCursor)
lnSec2 = seconds()
lcElapsed = str(lnSec2-lnSec1,10,3)

messagebox(lcDesc + ' result:' ;
 + str(liResult) + ' in ' ;
 + lcElapsed + ' sec.')

return

You could throw a browse command, like so,
at the end, if you liked:

select (lcNaCursor)
browse last

At any rate, the idea is that now you can open
VFP, type

do sqlshell with ;
 'select geoid,m01e,f01e,b01e from alldata'

and a few seconds later, the result set will be
created and stuffed into the cursor defined in
lcNaCursor, ready for you to examine and work
with as desired.

Enhancements to the basic shell
Additional mods are possible, of course. For
instance, you might want to create customized
cursor names instead of a hard-coded value, so
that as you execute subsequent commands,
previous result sets don't get overwritten.

Another mod would be to more rigorous
about the determining whether the command
actually succeeded. As the saying goes, “It's all
fun and games until somebody loses a half million
rows.”

The SQLEXEC() command returns a numeric
result. If the command failed, the result will be -1.

If the command is continuing to process, the
result will be 0. And once the command is
finished, the result value will be the number of
result sets produced. In our examples, we're only
expecting a single result set, but you can
configure SQLEXEC() to execute asynchronously,
and thus keep returning result sets.

Since SQLEXEC()'s behavior of simply
returning a -1 is the equivalent of a silent failure,
it's best to explicitly check the result. In fact, it's
imperative.

The call to messagebox() does provide a basic
alert that Something Bad Happened, but that's all.
Depending on your needs, you might want more
information than just a “-1” displayed.

For instance, perhaps you want the offending
command displayed for an eyeball inspection:

if liResult = -1
 messagebox(Command failed::' + chr(13) ;
 + lcStr + chr(13) ')
else
 messagebox(lcDesc + ' result:' ;
 + str(liResult) + ' in ' ;
 + lcElapsed + ' sec.')
endif

It can be pain to examine a long command to
determine just went wrong. Another
enhancement would be to parse the command
and offer to retry with a simpler version, say, no
WHERE clause, or an * instead of a limited field
list. Sure, these might impact performance on the
full data set, but if you're running tests on the
smaller SOMEDATA table, this is likely a
negligible concern.

Another scenario you might run into is where
the command runs fine on the test data set but
fails on the full data set. Consider doing a
SELECT DISTINCT on the field/fields in the
WHERE clause, in order to determine if there are
problems with some of the values in the domain.
Perhaps a few of the rows in the full data set
contain NULLs but the test data set doesn't?

Conclusion
SQLite's small footprint, flexibility with data
types, and blinding speed make it an excellent
mechanism for parsing large data sets. If you
don't already have it in your tool chest, you
should!

Author Profile
Whil Hentzen is a independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but
frighteningly few since 2007. He has realized he really
sort of misses it. You can reach him at
whil@whilhentzen.com

	Problems, Schmroblems
	The Solution
	Step 0. Preliminaries
	Step 1. Create a SQLite database and table
	Step 2. Import the data
	More Schmroblems
	Another tool for our toolkit
	Step 3. Preparing a test table for slicing and dicing the data
	Naming conventions
	Step 4. Slicing and Dicing
	Matching character strings
	Matching numeric values
	Matching dates
	Matching logical values

	Step 5. Automating access via a SQLEXEC() shell
	A hidden advantage to SQLSHELL
	Enhancements to the basic shell
	Conclusion

