
A Bevy of Timers
Whil Hentzen

Visual FoxPro applications left open while a user
is away can cause a couple of problems. One is the
display and access of confidential data. In these
days of HIPAA and other strict regulation about
who can see what data, it's more important than
ever to be able to restrict access granularly.
Another reason is needing the ability to run
system utilities that require exclusive access of
files; if an application leaves files open, those
utilities can't be run.

Application timeouts are generally better left to
the operating system to handle, but there are still
situations where it can be advantageous to have
VFP do the work instead. And it can be difficult, if
not impossible, for the operating system to close
individual forms in VFP.

In this article, I'll explore several ways to have
VFP time out an application as well as to time out
a single form.

Better yet, because examples of these methods on
the Web are typically provided as code snippets,
left up to you to decipher and implement, I'll also
provide a simple, yet complete framework that
demonstrates the use of each mechanism in
concert with an event loop, a menu, and a pair of
working forms.

Application level vs form level
timouts
Timeouts can be implemented on either an
application level, a form level, or both.

An application level timeout can be
implemented in a couple of different ways. In
each case, care has to be taken to handle open
forms; if they are open, deal with whether there
are pending edits in those forms, and, finally, if
there are processes such as reports, file copying,
or lengthy queries running at the moment the
timeout executes.

A form level timeout that works 99% of the
time is easy to implement using a VFP timer. It,
too, though, should deal with the possibility of a
pending edit (one would hope a user wouldn't
walk away from a form in the middle of an edit,
but it happens, particularly if they're off hunting

down info to enter) or processes launched by the
form and now running in the background.

Individual concerns aside, you'll also want to
consider and plan a strategy for the situation
when you have both application level and form
level timeout mechanisms in place. For example,
you could configure your system to have one
timeout value for the application and a second
one for forms. (It would also be possible to have
individual values for each form, but the issues to
deal with would be similar as having a single
value for all forms.)

So suppose you've got one timeout value for
the application and another for your forms. You
need to decide how they work in concert with
each other - do they run in parallel or in serial?

Parallel timers count down at the same time -
as soon as a form is opened, the application level
timer restarts (because of user activity) and the
form level timer starts running as well. So, if the
application level timeout value is ten minutes and
the form level timeout value is four minutes, the
form will close in four minutes and the
application will close six minutes after that.

Serial timers, on the other hand, run one after
the other. Once a form is opened, that timer starts,
but the application level timer halts. Once the
form timeout finishes and the form closes, the
application timer starts again. So in the previous
example, once the form closes, after four minutes,
the application timer will then count down, and
close ten minutes later, not just six.

Obviously, with parallel timers, you need to
take care of the situation where the application
level timeout value is shorter than the form level
timeout value. If the form timeout is six minutes
but the app level is five minutes, the app will
timeout before the form closes. That may be
acceptable, indeed, it may be by design (not sure
why, but who am I to question another's design?),
but if not, you need to deal with it. Either prohibit
the situation from happening in the first place by
testing the timeout values and changing one of
the values upon application startup, or dealing
with the possibility of the application closing
while forms are open.

Let's take a look at a couple of methods to
implement an application level timeout

mechanism first, and then address a form timer
next.

Application level timeouts
There are a couple of popular methods to time out
on the application level, one using VFP 9's
BindEvents mechanism to hook into the Windows
API (described by Christof Wollenhaupt in a blog
article of his), another only using the Windows
API, described by Stefan Wuebbe on
www.foxite.com. Gather a half-dozen developers
together and they'll proffer seven opinions on
why one is better than the other; I'll leave that
decision to you and your proclivities.

They both work the same general way -
setting a stake identifying the last time activity
occurred, then checking the current time to see if
the timeout span has passed since that last
activity. The way that the last activity is detected
is what differs between the two mechanisms.

The BindEvents mechanism has more pieces
to it, so I'll discuss the Windows API approach
first.

The sample code provided with this article
uses a single PRG that implements both
mechanisms, and uses a flag to drive which one is
executed. The flag can be passed as a parm to the
PRG and defaults to using BindEvents.

* parm of IDLE starts WinAPI mechanism
(Stefan's)
* parm of INACTIVE starts BindEvents mechanism
(Christof's)

lparameters lcWhichTimer
if pcount() < 1
 lcWhichTimer = 'INACTIVE'
endif

The PRG contains both a main program that
sets up the application as well as the class
definitions for the application object and the two
timers. It also creates a global object for the
application level timer. Which timer class was
used was driven by the flag:

case upper(lcWhichTimer) = 'IDLE'
 goTmr=CreateObject("IdleTimer")
case upper(lcWhichTimer) = 'INACTIVE'
 goTmr = createobject("InactivityTimer", 0.1)

The class definition for the application object
also contains a couple of properties that define the
timeout values

iSecondsForFormTimeout = 15
iSecondsForDialogTimeout = 15
iSecondsForAppTimeout = 10

and a flag that allows you to turn debug
statements on and off at one centralized location.

lShowTimerDebug = .f.

Using the Windows API
Stefan Wuebbe answered a post on foxite.com
regarding this issue with a solution that queried
the Windows API to detect user activity inside a
VFP application.

http://www.foxite.com/archives/vfp-code-to-
know-if-computer-is-idle-0000301035.htm

Implementing a timer with the Windows API
is straightforward, although it requires a bit of
magic if you're not experienced with the interface
or syntax.

The main program needs just one line, the call
to instantiate the class that's defined later in the
same PRG. After instantiation, the event loop was
started, and the application level timer is running.

The class definition is very straightforward.

Define Class IdleTimer as Timer
* Stefan Wuebbe

* Interval, LastInput and CurrentTime
* are all in milliseconds
* Timeout is in seconds

Interval=1000 && check every second
TimeOutInSeconds = goApp.iSecondsForAppTimeout

procedure Init
Declare Integer GetLastInputInfo ;

in win32api string @
Declare Long GetTickCount ;

in win32api
endproc

123456789_123456789_123456789_123456789_12345
procedure Timer
with this
Local lcBuf, lnLastInputMS, lnCurrentTimeMS
lcBuf = BinToC(8,'4rs')+BinToC(0,'4rs')

* last input, from winapi, defined in caller
GetLastInputInfo(@lcBuf)
lnLastInputMS ;
 = CToBin(Substr(lcBuf,5,4),'4rs')

* current time, from winapi, defined in caller
lnCurrentTimeMS=GetTickCount()

* developer feedback
goapp.debugox(goApp.lShowTimerDebug, ;
 'goTmr.timer() lnLastInput', ;
 lnLastInputMS, ;
 ': lnCurrentTimeMS:', lnCurrentTimeMS, ;
 ': .TimeOutInSeconds:', ;
 .TimeoutInSeconds*1000, ':')
_screen.Caption '
 = "Oh Hi! I started at " ;
 + transform(lnLastInputMS/1000) ;
 + ". I'm going to quit at " ;
 + trans(lnLastInputMS/1000 ;
 + .TimeOutInSeconds) ;
 + " and it is currently " ;
 + trans(lnCurrentTimeMS/1000)

* if the last input (a few minutes ago)
* + the timeout span is earlier than now,
* QUIT
if lnLastInputMS+(.TimeOutInSeconds*1000) ;
 < lnCurrentTimeMS
 goapp.debugox(goApp.lShowTimerDebug, ;
 'goTmr.timer() lnLastInputMS ';

http://www.foxite.com/archives/vfp-code-to-know-if-computer-is-idle-0000301035.htm
http://www.foxite.com/archives/vfp-code-to-know-if-computer-is-idle-0000301035.htm

 + '.TimeOutInSeconds < lnCurrentTimeMS';
 + '-> so... quitting!')
 if messagebox(;
 "Idle Timer timeout! Quit?",4)=6
 goApp.quit()
 else
 messagebox("Not quitting!")
 endif
endIf
endwith
endproc

enddefine

This mechanism uses the VFP timer class in
concert with the Windows API to query when
Windows events (keyboard presses and mouse
moves) occurred. A memvar to be passed to the
GetLastInputInfo API call is initialized. Then the
last time of an event is stored to lnLastInputMS
via the getLastInputInfo function, and
immediately afterward, the current time is stored
to lnTime via the GetTickCount() WinAPI
function.

Note that the values in the lnLastInputMS and
lnCurrentTimeMS memvars have precision to
approximately a thousandth of a second. For
example, the values captured would look like this:

lnLastInputMS 7381072020
lnCurrentTimeMS 7381213670

So the value of the time out span (defined as a
number of seconds) has to be multiplied by a
thousand to match significant digits.

Then the time out span is added to the last
time and the net is compared to the current time.
If the current time is greater, that means the
allowed time span has passed. In this sample
application, I update the _screen caption so you
can see what's going on, send off countdown
messages to the Debug Output window, and
display a messagebox to indicate the timeout
period has passed before calling the app's
shutdown method. In an actual implementation,
you'll want to remove all three.

Using BindEvents()
Back in 2009, Christoph Wollenhaupt wrote an
article about using BindEvents to time out an
application.

http://www.foxpert.com/knowlbits_200903.htm

Unfortunately, the article just showed a
snippet of code, leaving 'the implementation left
to the reader', and since this implementation was
at first glance more complex than just
instantiating a class, I decided that a broader
article was in order.

On the other hand, all calculations are done
with seconds; no translating from milliseconds

needed. Yes, it's just arithmetic, but why add
more complexity when not needed?

As with Wuebbe's, the main program needs
just one line, the call to instantiate the class that's
defined later in the same PRG. The complexity
arose with the class itself, as it had more pieces
than just a single Timer method like the WinAPI
mechanism.

Instantiation of the InactivityTimer class, after
creating a few properties, sets up the magic in the
init(), via two BindEvent() calls:

 BindEvent(0,WM_KEYUP,This,"WndProc")
 BindEvent(0,WM_MOUSEMOVE,This,"WndProc")

The first traps keypresses while the second
intercepts mouse movements. In each case, when
one of those events occurs, the WndProc() method
assigns the current values of seco() to the nLast
Activity timer property.

The Timer method of the class (this is a class
based on the VFP Timer class, after all), does a
very similar thing as the WinAPI mechanism -
compares the combination of the last activity and
the timeout value span to the current time, and if
the timeout span has been exceeded, calls a
method to handle it.

*===
* Detects user activity and fires an event
* after the specified period of inactivity.
* Christof.Wollenhaupt @ foxpert.com
*===
Define Class InactivityTimer as Timer

*--
* API constants
*--
#define WM_KEYUP 0x0101
#define WM_SYSKEYUP 0x0105
#define WM_MOUSEMOVE 0x0200
#define GWL_WNDPROC (-4)

*--
* internal properties
*--
nTimeOutInSeconds =
goApp.iSecondsForAppTimeout
nLastActivity = 0
nOldProc = 0

*--
* Timer configuration
*--
Interval = 1000 && in MS, 1000 = 1 second
Enabled = .T.

*--
* Listen to API events when the form starts. *
You can pass the timeout as a parameter.
*--
Procedure Init(tnTimeOutInSeconds)
 DECLARE integer GetWindowLong IN
WIN32API ;
 integer hWnd, ;
 integer nIndex
 DECLARE integer CallWindowProc IN WIN32API
;
 integer lpPrevWndFunc, ;
 integer hWnd,integer Msg,;

 integer wParam,;
 integer lParam
 THIS.nOldProc = ;

 GetWindowLong(_VFP.HWnd,GWL_WNDPROC)

 If Vartype(m.tnTimeOutInSeconds) == "N"
 This.nTimeOutInSeconds ;

 = m.tnTimeOutInSeconds
 EndIf

 This.nLastActivity = seco()
 BindEvent(0,WM_KEYUP,This,"WndProc")
 BindEvent(0,WM_MOUSEMOVE,This,"WndProc")

EndProc

*--
* Stop listening
*--
Procedure Unload
 UnBindEvents(0,WM_KEYUP)
 UnBindEvents(0,WM_MOUSEMOVE)
EndProc

*--
* Every event counts as activity
*--
Procedure WndProc(hWnd as Long, ;
 Msg as Long,wParam as Long,lParam as Long)
this.nLastActivity = seconds()
Return CallWindowProc(this.noldproc, ;
 hWnd,msg,wParam,lParam)

*--
* Check last activity against time out
*--
Procedure Timer

* developer feedback
goapp.debugox(goApp.lShowTimerDebug, ;
 'goTmr.timer() nLastActivity', ;
 this.nLastActivity, ;
 ': Current::', seconds(), ;
 ': .TimeOutInSeconds:', ;
 this.nTimeoutInSeconds, ':')
_screen.Caption ;
 = "Oh Hi! I started at " ;
 + transform(this.nLastActivity) ;
 + ". I'm going to quit at " ;
 + trans(this.nLastActivity ;
 + this.nTimeOutInSeconds) ;
 + " and it is currently " + trans(seconds())

* if current time is bigger than last
* activity + timeoutspan, we've exceeded
* the timeout, so offer to quit
if this.nLastActivity ;
 + This.nTimeOutInSeconds < seconds()

This.eventTimeout()
endIf
endproc

*--
* Override this event or bind to it
* to respond to user inactivity. You can
* change the nTimeOutInMinutes to offer
* multiple stages of timeouts.
*--
procedure eventTimeout
if messagebox(;
if messagebox(;
 "Inactivity Timer timeout! Quit?",4)=6
 goApp.quit()
else

messagebox("Not quitting!")
endif

enddefine

Sample code
The sample code included with this article has a
lot of bells of whistles that you can play with, but
to run it the first time, just load all of the
programs into a single folder and run the main
'it.prg' program.

Not passing a parameter will cause Christof's
Inactivity Timer to execute; passing the parm of
'IDLE', like so

do it with 'IDLE'

with cause Stefan's Idle Timer to execute
instead.

Form level timeouts

You may want to close a form independently of
closing the application. If this is the case, a form
level time out is mechanism what you want.

A simple form level time out
mechanism

A simple form level timeout mechanism has four
pieces.

First, the application object has a property
that holds the form level timeout value.

Next, the form has properties that store the
'last time' a KeyPress or MouseMove event was
detected. They are initialized in the form's Init().

Third, code in the form's KeyPress and
MouseMove events updates those properties with
the new value each time either of those events
fire.

Finally, a timer control on the form has code
in timer event that adds the 'last time' to the timer
time span. This total is compared to the current
time. If the current time is bigger, that means the
timeout has expired, and the form is closed.

Let's look at the actual code.
The main program, it.prg, initializes the time

span for the form timeout.
giSecondsForFormTimeout = 10

The form's Init() method initializes the
properties used to store the last time the keypress
and mousemove events fire as well as change the
caption to display a countdown of the timer.

Init()
this.caption ;
 = "Oh Hi! I'm going to disappear in " ;
 + transform(goApp.iSecondsForFormTimeout) ;
 + " seconds."
thisform.tmr.Interval = 1000
thisform.tKeypress = datetime()
thisform.tMousemove = datetime()

The form's KeyPress() and MouseMove()
events update the form's 'last time' properties
when executed.

KeyPress()
thisform.tKeypress = datetime()

and

MouseMove()
thisform.tMousemove = datetime()

Finally, the timer control's Timer() method
does all the heavy lifting. The timer Interval
property controls how often the timer will check
to see if the timeout span has been exceeded. The
timeout span is added to the 'last time' and the
total is compared to the current time. If the
current time is greater than the total, the span as
been exceeded. If the span has been exceeded, the
method that handled the closing of the form is
called. Additionally, the form's countdown in the
caption is updated.

Timer.timer()
local ltLast, ltCurrent

ltLast = max(thisform.tMousemove, ;
 thisform.tKeypress)
ltCurrent = datetime()

thisform.Caption ;
 = "Oh Hi! I'm going to disappear in " ;
 + transform(goApp.iSecondsForFormTimeout ;
 - (ltCurrent - ltLast)) ;
 + " seconds."

if tlLast + goApp.iSecondsForFormTimeout ;
 < ltCurrent
 thisform.Release()
endif
return

Timer resolution
While this example uses datetime() to track the
last time activity was detected as well as identify
the current time. The datetime() function only has
a resolution to a second; if you need better, use
seconds().

Problem
This mechanism isn't foolproof – the form level's
KeyPress and MouseMove events do not fire
when movement occurs within a control or when
the mouse is positioned over a control. Try this:

In the sample app, run the Timer Form -
Simple form from the File menu. The Done
command button has focus. Tab to the textbox.
Once the textbox has focus, the countdown timer
resets. Spend a few seconds typing and deleting in
the textbox, and you'll see the countdown timer
won't reset.

Second, move the mouse over the listbox. As
the mouse is moved, the countdown timer resets.

Now, as the timer counts down, move the mouse
only within the listbox. You'll see that the
countdown timer won't reset.

This may or may not be a big deal to you. If it
is, what are the options?

The easy way out is to add code to each
control's base class, such that the control's
KeyPress and MouseMove events update the
form's tKeypress and tMousemove properties.

Retrofitting an application can be more
complicated, because an instance of a control may
already contain code in the KeyPress or
MouseMove event, and thus the parent class's
method code won't get executed. You'd have to
manually include a dodefault() call in each
instance that contains code in one of those events.

A more complicated form level time
out mechanism

If the previous retrofitting methodology doesn't
cut it for you, you can use BindEvent to watch for
all activity, and if none is detected within the
timeout period, call the ActiveForm's mechanism
to close it, replacing the goApp.quit() statement,
like so:

Procedure eventTimeout
if messagebox("Form timeout! Quit?",4) =6
 _screen.ActiveForm.release()
else
 messagebox("Not quitting!")
endif

Other issues to consider
Demonstrating the handling of open edits in a
form while trying to close it is beyond the scope of
this article because of the wide variety of potential
edit mechanisms. Believe it or not, earlier this
year, I saw a VFP 9 application that still used the
1.x/2.x SCATTER and GATHER from memvars
technique.

Timeouts are not trapped during certain
circumstances, including file-system operations
like COPY FILE and long-running SQL queries.
Other developers have posited that timeout
mechanisms aren't reliable when an ActiveX
control has focus (I generally don't use them in
my applications, so I have no direct experience
there.)

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	A Bevy of Timers
	Application level vs form level timouts
	Application level timeouts
	Using the Windows API
	Using BindEvents()
	Sample code

	Form level timeouts
	A simple form level time out mechanism
	Timer resolution
	Problem
	A more complicated form level time out mechanism

	Other issues to consider
	Author Profile

