
Data Munging with Python
Whil Hentzen

I know this will come as a shock to you, but once 
in a while, you'll run into a data-oriented situation
where Visual FoxPro isn't going to cut it. In a 
previous article, I discussed the situation where 
an incoming data file exceeded VFP's 2 GB/.DBF 
capacity. We used SQLite to import a multi-
gigabyte table.

But even that solution won't work in some 
situations. Another component of that project 
involved a multi-gigabyte text file that contained 
several thousand columns. You read that right, 
several thousand. In case you're wondering, yes, 
E.F. Codd is rolling in his grave right now, and 
Chris Date is muttering, 'Shoot me now.” Even 
SQLite chokes on the CREATE TABLE statement 
that includes 4,300 column defs, surprise, 
surprise. 

In this article, I'll introduce another tool that 
should be in your toolkit, and in subsequent 
articles, show you how to attack this type of 
problem. The tool I'm referring to is Python, an 
open-source programming language that has 
become very popular over the last decade. 

I started on the Python journey a while back, 
wanting to expand my repertoire of development 
environments. Many VFP developers feel that 
.NET is the only choice available to them; as a 
former MVP and Lifetime Achievement award 
winner who got into big lots of trouble with 
Microsoft for championing Linux a decade ago, I 
knew better.

More importantly, I foresaw the day where I 
needed to be able to build applications on more 
platforms than just Windows. These days, 
customers are requesting work done for desktop 
Macs, Linux servers, and Android mobile 
platforms. VFP and .NET were not going to be 
able to satisfy that demand.

Python can.
For those of you unfamiliar, Python, created 

two decades ago, is an interpreted language with 
a syntax and flavor that VFP developers will find 
oddly familiar. Not identical, mind you; there are 
clear differences that will catch you unawares. But
by and large, you can be up and running with a 
simple but productive Python script (think 

'program') in an hour or two, unlike the learning 
curve required for popular competitors like C++ 
or Java.

Things You Need to Know
Most of you readers are VFP old-timers, and, as 
such, used to doing things 'the VFP way'. 
Changing paradigms, while not difficult, does 
require a virtual smack upside the head 
occasionally in order to shake out the old ways of 
thinking. For example, those of you who have 
done client-server apps may remember the shift in
thinking from table-based navigation to set-based 
ways of doing things. “No, we're NOT going to 
bring the entire 370,000 record data set down the 
wire to display in a grid.” 

So what new ways of thinking are required 
for Python?

Don't look back
There are two major versions of Python out in the 
wild today, the 2.x release tree and the 3.x release 
tree. 

As a VFP developer spoiled by Fox Team's 
excellent track record on compatibility, you will 
recoil in shock when you find out that 3.x is not 
backwards compatible with 2.x. 

That begs the question, should you use 2.x or 
start fresh with 3.x? 

Unless you've got an overwhelming reason to 
use 2.x (such as you've got a job that has a big 2.x 
code base), start with 3.x. It's been around long 
enough to have a good following, a lot of libraries 
converted from 2.x, and completely stable.

No kitchen sink here
First, Python is not an 'all-in-one' toolbox like VFP
is. You're used to firing up VFP and having 
everything you need, except for perhaps an 
external SQL database, or (shudder), a handful of 
ActiveX controls. Right there in the IDE, you've 
got your Editor, your Form Builder, your Menu 
Builder, your Debugger, your Code References, 
your Object Browser, well, you get the idea. 

With Python, you double-click on the icon 
and you get.... a command line, much like the dot 
prompt of dBASE II days. See Figure 1.



Figure 1. The Python Command Line.

To be sure, there are tools more advanced 
than “>>> “. When you install Python, IDLE 
comes along for the ride, Python's native 
Integrated DeveLopment Environment. Alas, 
IDLE is “advanced” in the same way that 
Notepad++ is more advanced than Windows 
Notepad. See Figure 2.

Figure 2. The IDLE interface, more advanced... than what?

There are more full featured alternatives to 
the Command Line and IDLE, and I'll discuss 
them in a bit. The point here is that Python 
doesn't fire up a widget-filled IDE like VFP or 
Visual Studio. So that's the first difference, and it 
takes a bit of tinkering to get your Python 
development environment set up the way you 
want it to work. That's a large part of what we'll 
be talking about in this article.

Inside Python
Once you've loaded Python, you'll begin to 
program by writing code in a text file (yes, code, 
none of those visual drag and drop 'code-less' 
methodologies for us!)

Unlike VFP, where you can pretty much 
format your code any way you want, all the way 
to just using the first four characters of language 
elements (who does THAT?), Python has several 
specific requirements. 

Python scripts are simple text files with a .py 
extension. Inside those text files...

First, Python is case sensitive. As a result, 
'amount' is different from 'Amount':

>>> amount = 100
>>> Amount = 95
>>> amount – Amount
5

Another example is
>>> sendinvoice = true

generates a “NameError: name 'true' is not 
defined” response while this works just fine:
>>> sendinvoice = True

Second, indentation matters. Indentation 
defines code blocks, like so:

if amount > 0
   sendinvoice = True
   print(“sent”)
else
  sendinvoice = False

But all lines must be indented the same 
amount:

if amount > 0
   sendinvoice = True
     print(“sent”)
else
  sendinvoice = False

generates an error.
Third, the basic Python interpreter just 

interprets your code. Unlike VFP, with its 
thousands of built-in functions as well as the 
object model, the classes, and the builders, the 
Python interpreter by itself doesn't come with a 
lot of goodies. You need to include modules to 
add functionality, much like you would include 
procedure files and libraries in VFP.  For example,
in VFP, you can issue the command
? cd

and the current directory is displayed. In 
Python, to determine the current directory, you 
need to import the 'os' module and then call its 
getcwd() function:

>>> import os
>>> os.getcwd()
c:\users\<you>\devp

Installing Python
Download Python from python.org. Since you're 
likely running Windows, click on “Download” on 
the left sidebar, and look for 
Python 3.3.2 Windows x86 MSI Installer 
(Windows binary -- does not include source) 

You'll download a file named Python-3.n.n.msi 
that's about 20 megabytes. Double-clicking will 
run the Python installer, except for one optional 
step described next, there's nothing to see here 



folks, move along, just click through until you're 
done. When finished, you'll have a pair of icons 
on your desktop, the Python command line and 
IDLE. 

The one step that you might want to change 
from the default is Customizing the features to be 
installed. Click on the red X next to Add 
python.exe to Path and have the installer add 
python to the Windows path. See Figure 3.

Figure 3. Adding python to the Windows path.

You'll end up with a new string in your 
Windows path, like so:

C:\Python33\;C:\Windows\system32;C:\Windows;
C:\Windows\System32\Wbem;C:\Windows\System32
\WindowsPowerShell\v1.0\;

Using the Python Command Line
The Command Line program can be found under 
Programs\Python 3.3. You can run it from there, 
or send it to your desktop, or pin it to your task 
bar. Whichever you do, run it in order to open the
window (as shown earlier in Figure 1.)

Just like the venerable dBASE II dot prompt, 
the Python Command Line allows you to type 
commands and echo the results back. Since this is 
a single window, there's no luxury of a 
“Command Window” and a separate output area 
(the screen) as we're used to in VFP.

Using the Command Window works just like 
you'd expect:

>>> 2+4
6
>>> 'hello!'
'hello'
>>> 'hello' + 'world!'
'helloworld!'
>>> 'hello' + ' ' + 'world!'
'hello world!'

It's not the most efficient use of printed space 
here to go through a bunch of exercises to teach 
you Python syntax. I'd recommend an excellent 
online tutorial called “Learn Python the Hard 
Way!” It's written for Python 2.7, so a few 

commands don't work quite the same way, but 
the general philosophy – you gain the first level of
mastery of a language by teaching your fingers to 
type the language elements – is sound. Go ahead 
and check it out at LearnPythonTheHardWay.org.
I'll wait.

OK, now that you've done so, you'll see that 
the first exercise doesn't work at all – the print 
statement in 2.7 was changed to a print function 
in 3.x. So the exercise that prompts you to try
>>> print “Hello World!”

fails like so:

File “<stdin>”, line 1
print “Hello World!”
                   ^
SyntaxError: invalid syntax

Instead, you need to pass the string as an 
argument to a function:

>>> print(“Hello World!”)
Hello World!

There's a great summary of the changes 
between 2.x and 3.x at 
http://ptgmedia.pearsoncmg.com/imprint_downloa
ds/informit/promotions/python/python2python3.p
df

Anyway, we'll not be using the Command 
Line to create programs, simply to test command 
syntax that we'll put in our programs.

Your First Python Program 
...will of course be “Hello World.” We'll do it in 
the simplest way possible, creating a text file that 
contains our program, and then executing it via 
the Python interpreter, just to get a feel for the 
basics. Then we'll do the same using IDLE, and 
finally, with a full fledged IDE. 

Setting up a work folder
In order to get started, we need to do a bit of 
housekeeping. First, we need to have a place to 
put our work. By default, both the Command Line
and IDLE will perform its work in the Python 3.3 
root folder. Not the best place to save our work. 
Let's create a folder for our Python programs. For 
the sake of this article, create a folder named 
'devp' in your user profile, like so:
c:\users\<you>\devp

This will serve as a scratch folder while we're 
getting started. Later we'll learn how to create 
folders for separate projects.



Configure a Command Prompt
While I've talked about the Python Command 
Line, a great interactive tool, you can execute 
programs via the Python interpreter. Open a 
Windows Command Prompt, change to the folder
that contains your Python program, and then type

c:\> cd \users\<you>\devp> 
c:\users\<you>\devp> python yourprogram.py

Since it'll be a nuisance to keep executing the 
'cd' command, why not change the 'Start In' 
property of the Command Prompt to the 'devp' 
folder so that the next time you fire it up, you're 
already where you want to be.

Creating and running Hello World!
Time to start.

Open up your favorite text editor. If you don't
have one, might I suggest Notepad++? Some folks
like gedit, and on Linux, it's my tool of choice, but
on Windows, there's a noticeable lag to start up, 
so I use Notepad++ instead. 

Enter the following line into your text editor
print(“Hello, World!”)

and save the file as 'hello.py' in your 'devp' 
folder. 

Switch over to your Command Prompt and 
type
c:\users\<you>\devp> python hello.py

*\\\ redo this screen shot without 'admin'?
You should see “Hello, World!' echoed back 

under the DOS prompt, as shown in Figure 4.

Figure 4. Setting up the Windows Command Prompt.

IDLE!
Yeah, I know what you're thinking. “What a 

nuisance, to have to have three separate programs
running – a text editor, a Python interpreter, and a
Windows Command Prompt. Doesn't really seem 
like the mid-2010s, does it?”

Python comes with it's own simple IDE, IDLE,
that incorporates all of these functions in one 
environment. 

If you followed the defaults when installing 
Python, you'll find 

IDLE (Python GUI)

in the Python 3.3 program group. Copy it to 
your desktop or taskbar, open up the shortcut's 
properties by right-clicking, and change “Start In”
to your 'devp' folder, just like you did with the 
Windows Command Prompt.

Once done, double-click on the shortcut and 
you'll be greeted with the IDLE UI as shown back 
in Figure 2. (They call it a “GUI”, which has left 
me scratching my head.) This is the IDLE shell.

Create your first Python script in IDLE by 
selecting File | New Window. You'll see a text 
editing window open up along side the IDLE shell
window, as shown in Figure 5.

Figure 5. The IDLE shell and text editor.

Enter the following line into the editor 
window
print(“Hello there, world!”)

and save the file as hellothere.py. Then run 
the script via Run |Run Module or hitting F5. 
You'll see the results appear in the IDLE shell 
window, as shown in Figure 6.



Figure 6. Running a program in IDLE.

Much better than our first option. While IDLE
has a rudimentary debugger, we're used to 
something more robust. Let's keep looking. 

*\\\your theme of IDEs being required for 
development. Running a couple of windows, 
linked or not, in order to do development, is the 
new/old normal. Your editor edits, your 
interpreter interprets, and your runtime 
application, perhaps a big app in dabo or a web 
app you view in a browser is a third. A debugger 
could be integrated or separate, just as the VFP 
debugger can be run in a separate frame 
(eliminating entire classes of Heisenbugs where 
focus goes ka-blouie when you click in an 
integrated debugger).

It's a hard lesson to learn, and I went through 
Eclipse (Java!) and Komodo and others before 
getting it. It's understandable you want to give 
VFP devs something familiar to work with (my two
largest 'legacy' PHP apps still have VFP-standard 
naming conventions!) but you might check with Ed
Leafe or Paul McNett to confirm this is yet another
'tab v. spaces' issue but the general consensus 
towards separate windows. Remember, they did 
name it Microsoft WINDOWS!

Installing PyCharm
While the command line or IDLE are all fine and 
good for simple tasks, as VFP developers, we're a 
little spoiled. Having to switch in and out of 
several applications just to run and test a chunk of
code feels like we've regressed to the days of 
using BRIEF instead of the native FoxBase editor 
or watching FoxPro for DOS shell out to 
theWATCOM compiler.

Searching for Python IDEs brings up the 
usual list of options; while the ugly are easy to 

spot (last updated, 2007?), it's hard to parse out 
the good from the bad. 

I'll suggest that you stay away from Komodo, 
while popular, it's getting increasingly too big for 
its britches, and suffering through their growing 
pains while you're just getting started will suck 
gumption from you faster than a user insisting 
“We don't need those fancy primary keys in our 
database.”

Instead, PyCharm, by the Czech company 
JetBrains, walks that fine between 'too simple' and
'too complicated.' 

Installing 
Grab a 30 day evaluation from their website, 
jetbrains.com/pycharm. Installing the 
professional version is a matter of a few click-
throughs, resulting in a 120 megabyte file (yeah, 
really?) and an opening screen as shown in Figure
7.

Figure 7. The PyCharm opening screen.

And configuring...
The first time you elect to create a project, you'll 
need to do some basic configuration. Figure 5 
shows the Create New Project dialog, with spaces 
for the name, location, type of project and the 
interpreter. See Figure 8. 

Figure 8. Starting a new project in PyCharm.

The first two are obvious, the third can be left 
as is (the other options provide wizards to create 
projects for various Python frameworks), and the 
last, well, therein lies the rub.



As installed, PyCharm doesn't know where 
Python is – you'll need to tell it. Click on the 
ellipsis to the right to open a dialog that allows 
you to match up your Python install and add in 
packages. See Figure 9.

Figure 9. Getting ready to identify your Python install.

Click on the green (+) sign in the upper right 
to open the Select Interpreter Path as shown in 
Figure 10. 

Figure 10. Selecting the Python interpreter path.

Once the Python interpreter is installed (you'll
see it in the top listbox), the configure routine will 
complain via a yellow warning at the bottom that 
some packages are missing, specifically, the 
package management tools. See Figure 11. Click 
the friendly hyperlink and you'll be guided 
through the installation. 

Figure 11. Warning that a package isn't installed.

If no packages are listed, be sure to highlight 
the item in the top listbox, as shown in Figure 12. 

Figure 12. Displaying packages for a particular install.

By the way, when you see a blue arrow next 
to an item in the 'Latest' column, select that row to
enable the Upgrade button. If all goes well, you'll 
be greeted with a green label (Figure 13); click the 
Apply and OK buttons and you're ready to start 
your first project.

Figure 13. Packages successfully installed.

Your First PyCharm Project
Unlike the simple scripts we created earlier, 
PyCharm allows us to create and manage projects.
You should be back to the Create New Project 
dialog shown earlier in Figure 8. Name your 
project 'helloworld' and click OK. You'll be 
greeted with the dialog as shown in Figure 14.

Figure 14. Your first Python project.

Under the hood, PyCharm created a folder 
where all the project's files are going to go. When 
you later call up a project, PyCharm will handle 
pathing within the folder.

 Select File | New to display the New Options
menu as shown in Figure 15, and select Python 
file.

Figure 15. Adding a Python templated file to the project.

A new file will display in the editor pane on 
the right, with a brief template statement already 
built for you. See Figure 16.



Figure 16. Adding a script file to the project.

This time, though, instead of adding a 
syntactically correct print statement, we're going 
to purposely make an error, so you can see the 
advantage of the PyCharm IDE. 

The statement you'll type on the second line 
of the editor is the 2.7 version of print: 
print “Hello again, World!”

Then select Run | Run 'hello' or click on the 
green arrow in the toolbar. The debugger pane  
will open and you'll see the error displayed, as 
shown in Figure 17.

Figure 17. The PyCharm debugger displaying an error.

Make the correction (adding parens), Run 
again, and you'll see positive reinforcement in the 
Debugger pane. Figure 18.

Figure 18. Your hello.py script running successfully.

Python, while syntactically similar to Visual 
FoxPro in many ways (compared to most other 
languages), still has enough differences to make 

getting started a challenge. This article has shown 
you how to set up Python's development 
environment so that you can begin creating 
projects and writing code in a half hour, rather 
than a couple of days. 

In the next article in this series, I'll show you 
how to use Python to manipulate files and write 
to Visual FoxPro tables. Along the way, we'll learn
more about creating Python scripts and maybe 
even take advantage of a little bit of Python object 
orientation!

Author Profile
Whil Hentzen is an independent software developer 
based in Milwaukee, Wisconsin (as opposed to 
Milwaukee, Minnesota, as many people think.) His 
writing has killed many trees over the years, but none 
since 2007. He has realized he really sort of misses it. 
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Data Munging with Python
	Things You Need to Know
	Don't look back
	No kitchen sink here
	Inside Python

	Installing Python
	Using the Python Command Line
	Your First Python Program
	Setting up a work folder
	Configure a Command Prompt
	Creating and running Hello World!
	IDLE!

	Installing PyCharm
	Installing
	And configuring...

	Your First PyCharm Project
	Author Profile


