
Data Munging with Python,
Part 2 – Handling Files
Whil Hentzen

I know this will come as a shock to you, but once
in a while, you'll run into a data-oriented situation
where Visual FoxPro isn't going to cut it. In a
previous article, I discussed the situation where
an incoming data file exceeded VFP's 2 GB/.DBF
capacity. We used SQLite to import that multi-
gigabyte table.

But even that solution won't work in some
situations. Another component of that project
involved several multi-gigabyte text files, some of
which contained thousands of columns. You read
that right, several thousand. In case you're
wondering, yes, E.F. Codd is rolling in his grave
right now, and Chris Date is muttering, “Shoot me
now.” Even SQLite chokes on the CREATE
TABLE statement that includes 4,300 column defs,
surprise, surprise.

Last issue, I introduced Python and showed you
how to create and run the traditional Hello World
script in several environments. This month, we're
going to start building scripts that handle files.

There are two ways to learn a new language. One
approach is to learn a ton of syntax withno
context, in other words, without an end goal in
sight. That's an educational style, learning for
learning sake, and if you've got the time and
patience, fine!

The other is to learn a narrow set of
capabilities in pursuit of a specific goal, and then
adding tools to your toolkit as needed. The
danger here, of course, is the possibility of
learning bad practices becoming narrow minded,
ending up doing things the long way around.

Since Python can be used to do most
anything, I think it makes sense to have a specific
end game in mind. Working with these files is the
end game for this article. Specifically, we're going
to break up that multi-thousand column file into
smaller chunks.

To get started, let's learn some useful
mechanisms.

Some Basic Python Philosophy
A lot of VFP developers like Python because of its
similarity to Fox. That said, it's not identical. Let's
look at the Python frame of mind for a moment.

There's SO MUCH to Learn!
You know how overwhelmed someone new to
VFP feels? Python is the same, even more so.
Python doesn't have the panoply of design
surfaces and embedded data access that VFP
does, but Python's core language has much more
depth than VFP's broad but shallow suite of
commands and functions. Thus, it will take
several passes at the language to develop comfort
with the richness of the constructs and nuances of
the syntax.

Being Pythonic
Unless you've only worked on your own code
during your career, you've undoubtedly seen a
variety of coding styles. You've also seen that
there are some generally accepted ways of doing
things in VFP, at least, in the visible community.
Adhering to standards makes it easier for
someone else to read, understand, help and
maintain your code.

The Python community has adopted a set of
generally accepted principles as well, and taken it
further, to become almost a personality, and even
a written set of guidelines. Thus, you'll often see
people offer a solution to a problem, and then
follow up with an improvement, saying,
“Actually, this way is more Pythonic.”

Unless you want to code in a cave the rest of
your life, it's a good idea to try to become
Pythonic as well. Code you see will make more
sense, and it'll be easier for others to help you.

See PEP 8 for the definitive style guide.

http://www.python.org/dev/peps/pep-0008/

Spelling Things Out
While many programmers may delight in writing
constructs that attempt to jam as much
functionality into a single line as possible, their
cleverness comes at the expense of readability,

and thus, maintainability. I prefer to create
intermediate variables that will be used
throughout the routine and can be inspected as an
aid to debugging and making later modifications
easier and more reliable.

Thus, instead of this:

 geoid = line[:line.index("|")]

(the Python version of

substring = Substring(line, AT(“|”, line))

in VFP, I would do this:

 firstpipepos = line.index("|")
 geoid = line[:firstpipepos]

While this example may seem trivial, it's
actually useful, because the 'firstpipepos' variable
will be used throughout the subsequent code, and
thus being able to debug it separately will be
useful.

Sample Code Notes
This article has several exercises, each built in a
separate project. For each project, I'll be using
PyCharm as discussed in my last article. The
PyCharm projects all use a script called main.py,
but since you might be working in the Command
Window or IDLE, those main.py files have been
renamed in order to be included with this article.
Each main.py file will contain all of the code
segments for the first project in this article. Each
code segment will be numbered separately and
marked off with “IF” control structures. To run
one sample code segment, just flip the flag for that
IF statement to True.

Some Basic Python Constructs
Now we need to learn a few basic mechanisms
that we'll use throughout our projects in this
article.

Logic Structures - IF
It's pretty difficult to write any kind of useful
program without doing a logical test, and, like
VFP, you use the IF statement to do so. The most
basic form, similar to “if .t.” in VFP, is this:

if True:
 <some code>
<some code after the IF segment

Several notes of interest. The Python
equivalent to '.t.' is True (and, similarly, False.)
These are case sensitive, you can't use 'true' or
'TRUE'.

Second, the IF statement must be terminated
with a colon.

Third, if you need an 'else' condition, use 'elif'.
Nifty about this statement, you can use multiple
iterations. Additionally, close the entire segment
with 'else', like so:

if x = 0:
 <some code>
elif x = 1
 <some code>
elif x= 2
 <some code>
else
 <some code>

Finally, you don't need an 'endif' statement.
Remember from last time, indentation controls
code blocks, returning to a non-indented
statement finishes the code block.

Logic Structures - Loops
If you want to iterate through a a list, use “for”.
Different from other languages, Python's “for”
allows you to iterate through any type of list, not
just a sequence of numbers. In VFP, you'll do this:

dimension animals[5]
animals[1] = 'aardvark'
animals[2] = 'beaver'
animals[3] = 'cat'
animals[4] = 'dog'
animals[5] = 'egret'
for I = 1 to 5
 ? len(animals[i]), animals[i]
next
8 aardvark
6 beaver
3 cat
3 dog
5 egret

In Python, you can do this:

animals = [aardvark, beaver, cat, dog, egret]
for critter in animals:
 print(len(critter), critter)
8 aardvark
6 beaver
3 cat
3 dog
5 egret

(Just like “if”, you'll need a colon at the end of
“for” statement.) It's a little unnerving to see
'critter' seemingly to be used as a counter just like
'I' is used in VFP “for” constructs, so instead,
think of a VFP 'for each' construct instead.

Critter is the value of each element in animals,
one at a time, as driven by the for iterator. In fact,
if you're iterating (looping) through a collect of
objects, critter can be a full-fledged object, and not
just a scalar value.

UDFs
Remember the thrill you experienced when UDFs
were added to the xBASE language? A whole new
world opened for us. Now we take them for

granted. So how do you create your own UDF in
Python?

The 'def' construct defines a function,
including the parameters passed, like so:

def MyFunc(firstname,lastname)
 fullname = lastname + ', ' + firstname
 return fullname

In a script, you'll want to include the def
before the code that uses it.

Passing Parameters
Let's talk about how to create a Python script that
takes an external parameter.

Fire up PyCharm and create a project named
fileproc. Create a script file named main.py, and
enter the following code in it (the '#' char is one
way to identify a comment):

call like this: python main.py filename.ext
from sys import argv
scriptname, filenamenext = argv
print("My script is called", scriptname)
print("The filename/ext is", filenameext)

Figure 1 displays what your editor window
should look like.

Figure 1. A script that accepts two parms.

Remember how I mentioned in the last article
that you have to import modules to add
functionality? Here's an example. We're importing
the argv module from the sys library for use to
pass parameters (arguments) to the script. Then
we define the arguments, and use them.

Now just run the script (via the Run menu or
the toolbar button.)

Oh, wait.
Clicking the Run button throws an error and

opens the Debug pane at the bottom of the
window to show you what is is. See Figure 2. I bet
you knew that was coming, didn't you? After all,
there wasn't any place to define what the
argument being passed to the script was.

Figure 2. Running without parms throws an error.

A moment of panic, when you think, “Do I
have to open up a Command Prompt to run
Python scripts if I want to pass a parameter? How
kludgy!” But then you realize that an IDE this
sophisticated must have planned for that
contingency. And indeed they did.

Select the Run | Edit Configuration menu
option to display the Edit Config dialog, and enter
a parameter to be passed to the script in the 'Script
parameters' text box, specifically, the name of the
data file (“MyBigDataFile.dat”), as shown in
Figure 3.

Figure 3. The Edit Configuration dialog.

Click Apply and OK, and then click the Run
button on the toolbar again. This time, as shown
in Figure 4, success!

Figure 4. Successfully running the script with the proper parm.

Note that scriptname is a required parm in
the

scriptname, filenamenext = argv

statement, even if it isn't used.
So that's the first piece of the puzzle – we are

now able to create a Python script that takes a
parameter, such as a filename, and can do
something with it.

As an aside, you may be wondering how to
pass a parameter to a Python script in a DOS
window.

F:> python main.py test.txt

If you're already in the Python interpreter,
you'd think you could simply do something like
this:

>>> main.py test.txt

but the answer is considerably more complex,
so for the time being, we'll pass it by.

Project 1: Working with Files
(The code for this project is in main.py in the FileProc
project.)
Our first project is to write a script that:

- reads in a file,
- manipulates the data in the file, and
- outputs various pieces.
In order to do so, we need to learn to write a

script that takes parameters, returns values, and
likely (we're just guessing here, but I'll bet it's a
pretty good guess), contains one or more
functions. We'll learn a couple more things along
the way.

Opening Files
Since we've gone to so much trouble to pass the
name of a file to the program, perhaps we should
step up our game and do something with that file.
Like... open it!

First, we'll need a data file to manipulate.
Included in the source code for this article is a
small text file named 'thisguy.txt'. It contains
about a half dozen lines of text of varying lengths,
typed into a text file using the Notepad ++ editor,
and relying on the return key pressed to create
line breaks with chr(13) and chr(10) line break
characters.

We'll use the open function on our filename,
and create an object from the result, like so
(example 1 in main.py):

txti=open(filenameext)

The txti variable is an object reference and has
methods attached to it, such as read(). Thus, we
can do this:

print(txti.read())

to print the entire file. When we're done with
the file, be sure to close it, like so:

txti.close()

Put them all together at the end of our
'main.py' script, run it, and the results will display
in the Debugger pane, as shown in Figure 5.

Figure 5. Echoing back the source file.

So far, so good. Let's do something more
interesting with our file than just spit it back out.
How about if we parse a line?

Add the lines (as shown in example 2)

myline=txti.readline()
print("my line is:", myline, "!")

after the print(txti.read()) statement, execute
your script, and you'll find that the new print
statement doesn't print anything in between “my
line is” and “!” Some of you probably already
came up with the answer – the read() function
moves the 'pointer' in the file, and so when done
printing the whole file, the command to print the
results of readline() simply print what's at the end
of the file – nothing!

Remove the print(txti.read()) statement, so
that the pointer is still located at the beginning of
the file. Rerun, and you'll see the first line in the
file printed out.

Processing a File
Our goal is to be able to manipulate the contents
of the file in a variety of ways. We want to get
comfortable moving through the file. One way to
learn is to find out how long each line in the file
is. To do so, we'll have to spin through the lines

and perform some sort of line length operation on
each line, and print out the length, one after
another. Thinking ahead just a bit, we'd end up
with a list of numbers after the program is done.
Not really useful – and difficult to vet. How
would we know if the results are correct? How
about if we print out the line next to the length?

The construct we'll use (no surprise!) is the
“FOR” loop, although with Python, we don't have
to close it. Instead (remember the first article),
indentation tells Python how long the construct is
(example 3).

txti=open(filenameext)
for line in txti.readlines():
 print(len(line), line)
txti.close()
this non-indented comment is not
part of the FOR construct

Unfortunately, the result may not be... quite
what we were expecting, as the lines each are
double-spaced. See Figure 6.

Figure 6. Echoing the length of each line in the source file.

What's this white space between the lines?
When we grabbed the line, the newline chars
were included, and they're also “printed.” How
about if we knock the last byte off each line before
printing? (Example 4)

txti=open(filenameext)
for line in txti.readlines():
 nn = len(line) – 1
 print(len(line), line[:nn])
txti.close()

Much better. (The [:nn] construct will be
covered in the “Working with Strings” section
later.)

Let's discuss a bit of what we've seen so far.
The indentation rule is worth repeating, although
for most of us, it'll become second nature almost
immediately. Technically speaking, you don't
need to have a non-indented line immediately
after the construct. For example:

txti=open(filenameext)
for line in txti.readlines():
 print(len(line), line)

txti.close()

although that style isn't considered 'Pythonic'.
Also, something that still bites me, flipping back

and forth between Fox and Python, is the required
':' terminator after the FOR statement.

So now we can read through a file and
manipulate individual lines. Now it's time to learn
to write results of our processing to a second file.

Writing to a File
Instead of echoing our calculations to the screen
via print(), let's send them to a second file. In
order to do so, we'll need to open that second file,
and do so in 'write' mode:

txto=open('outputfile.txt','w')

The 'txto' string (the trailing 'o' is for 'output')
is an object reference that we can manipulate just
like 'txti' was earlier. We'll do so thusly:

txto.write(str(len(line)))
txto.write(line[:10])
txto.write("\n")

We'll get the length of each line, grab the first
few characters of that line (so that we double
check to make sure we are doing the work
correctly, e.g. make sure we are skipping through
the file and not simply processing one line over
and over again), and, finally, terminate the line.
The salient part of the script (example 5) now
looks like this:

txti=open(filenameext)
txto=open('outputfile.txt','w')
for line in txti.readlines():
 txto.write(str(len(line))+' ')
 txto.write(line[:10])
 txto.write("\n")
txti.close()
txto.close()

You'll notice a couple of things in this code
snippet. First, the output file was opened with a
second parm, 'w', identifying that the file is open
to write to. Second, unlike print(), the 'write()'
function can only take one parameter, so you can
write multiple items either by concatenating them
(as I did in the first write() statement), or by using
multiple write() statements, as I did in the
following lines.

The resulting 'outputfile.txt' looks like this:

69 This guy w
51 The barten
51 The guy re
52 The barten

Optimizing File Opening
(The code for this project is in main.py in the FileRead
project.)
While txti.readlines() construct works fine to grab
and process the entire file at once, it's less than
optimal for several reasons. First, because it is
processing the file 'live', it's difficult to go through

the file more than once. You'd have to open the
file and execute readlines() again, which is clearly
wasteful.

Even worse, readlines() reads the entire file
into memory all at once, and thus can perform
poorly in terms of memory usage. Let's look at an
alternative.

There is a second method, readline(), that
allows you to move through a file line by line, like
so (example 1):

txti=open(filenameext)
txti.readline()
<first line>
txti.readline()
<second line>
<etc>

However, you have to trap for the return of
an empty string to tell that you've reached the end
of the file.

Python has a concept called 'iterable objects';
we saw a glimpse of them in the 'animals'
example earlier. A file is a natural target for
demonstrating this concept, as the file data type
has a built 'next' method that allows you to step
through it line by line (example 2).

txti=open(filenameext)
txti.next()
<first line>
<etc>

However, the next() method, like the
readline() method above, requires you to trap for
the end of the line, this time raising a
StopIteration exception that can be trapped.

Since the file object has this next() method
built in, it can be stepped through with a for loop
because the next() method and the end of file
StopIteration except are automatically handled.
Thus, this works quickly and elegantly (example
3):

txti=open(filenameext)
for line in txti:
 print(len(line), line)
txti.close()

With these tools, we can now begin to work
on the monster 2000 column file mentioned at the
beginning of this article.

Project 2: Working with Strings
(The code for this project is in main.py in the
FileMinMax project.)
We have to know what is in our very, very, very,
very large data file before we can work with it.
For example, how many lines are in the file?
What's the longest line? The shortest? How many
of a specific character are in a line? Where is a

specific character in a line? How can I pull a
substring out of a line?

Create a project named fileminmax and add a
main file called main.py.

Counting Lines
Determining how many lines exist in this file is,
by now, anti-climactic. Example 1:

txti=open(filenameext)
howmany = 0
for line in txti.readlines():
 howmany += 1
print('howmany', howmany)
txti.close()

As an aside, this is more an example than
practical, as there are easier ways than scanning
through the whole list to determine the number of
items in that list. For example, if we store the
entire file to a list (named “lines”), the len()
function will tell us how many items are in the
list, as shown in example 2:

txti=open(filenameext)
lines=txti.readlines()
howmany=len(lines)
print('how many lines',howmany)
txti.close()

Even more 'pythonic' is this single line:

num_lines = sum(1 for line in
open('myfile.txt'))

Determining shortest/longest lines
We'll iterate through the file, line by line, and
compare the length of each line to predefined
minimum and maximum values. If the length of
the current line exceeds either, the min or max is
updated. Example 3:

txti=open(filenameext)
nummaxchar = 0
numminchar = 100000
sstart = time.time()
iterate through list content
for line in txti:
 linelen = len(line)
 if linelen > nummaxchar:
 nummaxchar = linelen
 if linelen < numminchar:
 numminchar = linelen
print('shortest:', numminchar, 'longest:',
 nummaxchar)
sstop = time.time()
print('span:', sstop-sstart)
txti.close()

The results should look something like that
shown in Figure 7.

Figure 7. The output of the FileMinMax project.

Determining columns in a line
Third, we want to figure out how many data
columns are in a line. Columns are separated by
the pipe (“|”) character, so if there are 20
columns, there will be 19 pipes in the row (there is
not a leading or terminated pipe.) The count()
function will return the number of items in a list,
like so (example 4):

txti=open(filenameext)
oneline=txti.readline()
howmany = oneline.count('|')
print('number of pipes:', howmany)
txti.close()

If you had more complex evaluations to do, you
could wrap a test in a FOR loop and increment the
counter, as in Example 5:

txti=open(filenameext)
oneline=txti.readline()
howmany = 0
charaprev = ''
for chara in oneline:
 if chara=='|' and charaprev<>'|':
 howmany +=1
 charaprev = chara
print('number of pipes:', howmany)
txti.close()

Where is a specific character in a line?
VFP devs, you're thinking 'at()', aren't you?
Python has two mechanisms to determine where
the first instance of a character is in a line: find()
and index(). The difference is that find() returns a
'-1' if not found while index() raises an error
condition.

>>> oneline='abcdef'
ol.find('d')
3
ol.find('i')
-1
ol.index('i')
Traceback (most recent call last):
ValueError: substring not found

Thus, to find the first instance of a pipe
character in a line:
firstpipepos = oneline.index("|")

Where to find the nth char in a line?
One of the niceties of VFP's at() is the third parm,
where you can specific which occurrence of the
string you're looking for. Python's find() and
index() have no such parm. Instead (because we're
going to need this in a little bit), it's time to write
our first function.

def findnth(bigstr, lilstr, i):
 pos = bigstr.find(lilstr)
 while pos >= 0 and i > 1:
 pos = bigstr.find(lilstr,
 pos+len(lilstr))
 i -= 1
 return pos

And there you go, you can see how, while the
syntax is a bit different, you already intuitively
understand every line of code.

To use it

txti= open(filenameext)
oneline=txti.readline()
begpipenum=7
begpipepos = findnth(oneline, '|', begpipenum)
print('pos', begpipenum, ' is', begpipepos)
txti.close()

How to pull a substring out of a line?
Next, we'll want to pull a substring, and now that
we know how to find where a specific character is
(say, the beginning of that substring), we can go
to town!

The '[:nn]' (VFP devs, think 'substr()') is not
just useful, it's quite flexible. For instance (see
example 7 in main.py):

prints entire line
print(line)
prints first ten chars
print(line[:10])
starts at 16th char, prints rest of line
print(line[15:])
prints characters 3 through 16
print(line[2:15])

The careful reader may spot a seeming
discrepancy between the second and third
examples. Yes, Python is zero based, so [15:] starts
with character number 16, as the index begins
with 0.

We now have some tools to use with our very,
very, very, very big data file.

Project 3: Splitting Chunks
(The code for this project is in main.py in the
FileSplitChunks project.)
Armed with a rough idea of the size and scope of
the file and the ability to extract sections of a line,
we now want to analyze exactly what's in this file
and break it down into manageable pieces.
Remember, this file contains thousands of
columns; just plain silly no matter which way you
look at it.

Under the hood of the files
The business logic is trivial, and the algorithms
aren't very complicated either. The value this
exercise brings is experience using a new
language, and learning new concepts. Let's look at
the business and processing parts first.

We know a couple of things about this
monster file, according to a file specification that
was provided with the actual data file.

The file consists of one set of two columns
and then a number of 192 column chunks, each of
which is identical, and each of which contains
data applicable to a specific industry. For

example, one set of 192 columns contains data for
industry code 402, the next set of 192 columns
contains data for industry code 404a, and so on.

You can think of this structure as a set of
identical spreadsheets placed one next to the
other; the first two columns acting as a compound
primary key that applies to the row in each of the
spreadsheets.

CPK Chunk1 Chunk2 Chunk3
geo occ b1..b192 c1..c192 d1..d192
0502344 1024 29 8.0 10 2.7 128 35.1

Thus, the compound primary key of 0502344
1024 applies to the data ranging from 29 to 8.0 in
chunk 1, the data ranging from 10 to 2.7 in chunk
2, and the data ranging from 128 to 35.1 in chunk
3, and so on.

When we split this file apart, we'll create
separate files for each chunk (each named with
the industry code mentioned above), but will
need to include the 'geo' and 'occ' columns as the
first two columns in each file.

File from chunk 1
CPK
geo occ b1..b192
0502344 1024 29 8.0

File from chunk 2
CPK
geo occ c1..c192
0502344 1024 10 2.7

File from chunk 3
CPK
geo occ d1..d192
0502344 1024 128 35.1

More specifically, the first column is a
geographic ID, a 14 character string that defines
the type of region the data applies to (say, a state
or a city) and then a PK for that region. The
second column is an occupation code for the data,
describing what job(s) the data applies to.

We don't need to know anything more than
that, but it's important to understand that these
two data elements apply to all of the data in the
row. Thus, when we pull chunks of columns out
of the row, we need to include these two columns
each time as well.

The first thing we'll need to do is determine
how many 192-column chunks are in the file.
We've already determined how many pipe
characters are in a row; what we need to do now
is, based on that number, determine how many
192 column chunks are in that file.

pipes = # chunks * 192 + 1

or

chunks = (# pipes-1)/192

So a data file with (for example) 2113 pipes
has 11 chunks. After breaking this data file up,
we'll end up with 11 files, each with 194 columns
(the geo ID column, the occ column, and the 192
columns in the chunk) in it.

The project is filesplitchunks. Let's look at
how to do it.

First, we'll need to use the code from the
previous project to determine how many chunks
we are creating and add the calculation to get the
number of chunks:

howmanychunks = (howmanypipes-1)/192
print('number of chunks:', howmanychunks)

Armed with this, we'll need to create a series
of files (fileN, where N ranges from 1 to
'howmanychunks') and then, as we iterate
through each line in the very, very, very, very big
data file, write segments of data to each of the
files.

The p-code looks like this:

for line in lines:
 get the first 2 columns
 for chunk of howmanychunks
 get 192 columns
 write 2 cols + 192 cols to fileN

The implementation will be a bit more
involved, of course. I'll spend some time talking
about the syntax involved, because isn't that what
drives you crazy – you have the algorithm
working, but there's just one expression that
doesn't seem to be working like you expect?

Building the industry files
First, let's talk about how to build the files that
will hold the chunks. As mentioned earlier, we'll
use the industry code to build a unique filename;
the chunk of columns belonging to industry 402
will be placed in a file named ind_402.dat.

One of VFP's hidden gems is macro
expansion, being able to substitute strings into
variables that are interpreted at runtime. So we'd
be able to do this:

dime laInd[11]
laInd[1] = '401'
laInd[2] = '402'
laInd[3] = '402a'
…
laInd[11] = '409'

for li = 1 to alen(laInd)
 lcNaFile = 'ind_' + laInd(li) + '.dat'
 strtofile(geoid+”|”+occ, lcNaFile)
next

In Python, we'd do something like this:

indlist = ['401','402','403','404',
 '405','406','406a','407',
 '408','408a','408b']

for ind in indlist:
 print('industry:', ind)
 feout = 'ind_%s.dat' % (ind)
 print('output fn for:', ind, feout)
 with open(feout, 'w') as out:
 out.write(ind)

See what I mean by “it's just syntax”? Let's
walk through the code, line by line.

The first statement (spread over three lines
here) introduces a new concept of 'lists'. We saw
that we stored the names of the chunks to a one-
dimensional array in VFP.

You might be thinking 'array!', as you would
with VFP. But Python has different mechanisms
to handle this type of work. First, Python's arrays
are different than VFPs, and we won't use them
much. Second, for many purposes, Python uses a
mechanism called a 'list', which is exactly what it
sounds like, a list of 'things'. Think “list = one-
dimensional array.”

So the statement

indlist = ['401', '402', '402a', '403'...]

creates a list of industry codes that we'll use
shortly. By the way, lists, as you might have
guessed, are zero-based. If you wanted to retrieve
the fourth item in a list, you'd do this:

>>> indlist[3]
403

(You can start adding your own 'one-off error'
jokes now.)

The second line should be comfortable to you
by now; we're iterating through the items in the
“indlist” list, referring to them by the variable
named “ind”. As a way to be comfortable, I've
included a “print()” statement that simply
displays the value of “ind” for each iteration of
the “for” construct. It's not necessary for the
working of the program.

The next line is where the magic starts. We're
creating a variable named “feout” (for filename
extension output), and stuffing a string that looks
like (mostly) this:

ind_.dat

The one piece that is foreign is the “%s”
string. It's a placeholder for a variable, sort of like
how we used “laInd(li)” in our VFP assignment:

lcNaFile = 'ind_' + laInd(li) + '.dat'

earlier. The difference is that the '%s' is
actually a formatting construct, while the variable
being stuffed into the construct follows, via the

% (ind)

string. (I'll refer you to the docs for all the
nuances of '%' format strings, as there are many,
much like VFP's InputMasks and Format strings.)
So, putting it all together, we're iterating through
the “indlist” list, stuffing the values, one by one,
into the 'feout' variable (Filename Extension
OUTput):

 feout = 'ind_%s.dat' % (ind)

We now have a name of the file that looks like
this:

ind_401.dat

But we just have a filename, the file itself
doesn't really exist yet. (Again, the sample code
prints the name, just to show you what it really
looks like.)

The next statement actually creates the file:

 with open(feout, 'w') as out:

and the final statement writes data (in this
case, just the industry code) to the file just created:

 out.write(ind)

So now we can create a variable number of
files and write to them. Next, it's time to parse the
two PK columns and the appropriate set of 192
columns for each chunk.

Parsing the PK Columns
For each line, we'll need to grab the geoid and occ
columns. Here's how:

txti=open(filenameext)
for line in txti:
 # get the first 2 columns
 linelen = len(line)
 firstpipepos = line.index("|")
 secondpipepos = line.index("|",
firstpipepos+1,linelen)
 geoid = line[:firstpipepos]
 occ = line[firstpipepos+1:secondpipepos]
txti.close()

Back to the construct that extracts geoid and
occ. The first few lines in this code segment
should be familiar by now. We grab an object
reference to the input file, and then iterate
through each line in that file via “for”. For each
line, we determine how long the line is, because
we'll need that value shortly.

Next, we determine where the first pipe is,
like so:
firstpipepos = line.index("|")

which enables us to grab the geoid column –
all the data from the beginning of the row to the
first pipe, like so:

geoid = line[:firstpipepos]

As mentioned earlier, the [:j] construct is
similar to VFP's substring function, taking the first
'n' characters. (If there had been a value before the
colon, the [i:j] construction would have taken the
characters from “i” through “j”. Again, remember
this is zero-based.)

Parsing the 'occ' column is slightly more
difficult, as we need to start at the first character
after the first pipe, and continue until we reach
the second pipe.

The stripped down format looks like this:

occ = line[from:to]

The expression

line.find(“|”)+1

begins the extraction at the position after the
first pipe, and since we have the position of the
first pipe:
firstpipepos+1

is where we start the extraction of the second
column. Easy enough. The location of the second
pipe is a bit trickier.

The “index” function can be passed additional
parameters that define where it starts and ends.
In order to find the second pipe, we want the
index function to start searching after the first
pipe, which we've found is

line.find(“|”)+1

Then we want the searching to end at the end
of the line, which is the value

linelen

that we calculated earlier. Putting it all
together, the location of the second pipe (the 'to'
expression) is

secondpipepos = line.find("|",
firstpipepos+1, linelen)

(This all goes on one line, it's broken in order
to fit.) Thus, the occ column is:

 occ = line[firstpipepos+1:secondpipepos]

We'll use “geoid” and “occ” repeatedly when
writing to the industry files.

Parsing a 192 Column Chunk
 Our next task is the parse a 192 column chunk of
data. We'll do this 'n' times, where 'n' is the

number of chunks in the very, very, very, very big
data file.

Much like grabbing the 'occ' column, we can
grab the 192 columns in one fell swoop by
identifying where the pipe that comes before the
string is, and then extracting all the data between
that pipe and the 193rd pipe following.

begpipenum = 2+192*(index)
endpipenum = 2+192*(index+1)

Then we can find the position of those pipes
using our 'findnth' function, described earlier in
this article:

begpipepos = findnth(oneline, '|', begpipenum)
endpipepos = findnth(oneline, '|', endpipenum)

And, finally, grab the chunk, like so:

thischunk = line[begpipepos+1:endpipepos]

This particular construct uses the algorithm
discussed earlier to identify the positions of the
starting and ending characters for a specific chunk
as identified by the 'ind' (index) counter. Now let's
put it all together, spinning through the entire file.

txti=open(filenameext)
for oneline in txti:
 linelen = len(oneline)
 firstpipepos = oneline.find("|")
 secondpipepos = oneline.find("|",
 firstpipepos+1,linelen)
 geoid = oneline[:firstpipepos]
 occ = oneline[firstpipepos+1:
 secondpipepos]
 index=0
 begpipenum = 2+192*(index)
 endpipenum = 2+192*(index+1)
 begpipepos
 = findnth(oneline, '|', begpipenum)
 endpipepos
 = findnth(oneline, '|', endpipenum)
 thischunk = oneline[begpipepos+1:
 endpipepos]
txti.close()

Assembling the PK and 192 Column
Chunks

Now that we can grab a chunk for a single
industry, it's time to put this all together. We have
two ways to go about this.

One way is to roll through the file and process
each line for the first industry, then roll through
the file a second time for the second industry, and
so on. While we are only processing each input
line once, we're spinning through the input file
multiple times, once for each industry.

Another way is to process each line in the file
once, writing to each of the industry files in turn,
for each line. The tradeoff is that while we're only
processing the input file once, we are writing to
each industry file for each line. Is there a cost to
switching handles?

Next time, as we learn to write to a series of
files, we'll look at both ways, using our million
row file to acquire some timing data. We'll also
write those output files to DBFs, since that's the
format our user is expecting. And we'll look at a
bit of double-checking our results as well.

Source code

Project 1 (Working with Files):
fileProc: 1proc.py, thisguy.txt
fileRead: 2read.py, skeleton.txt

Project 2 (Working with Strings):
fileMinMax: 3minmax.py, test002rows.dat

Project 3 (Splitting Chunks)
fileSplitChunks: 4split.py

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

Here's a suggestion: get rid of all the negatives.
Not, doesn't. Whatever. Rewrite any sentence
with three commas in it. Remove one from any
sentence with two. Your writing feels strained,
like you're trying too hard to build complex
sentences. Or maybe this is my problem, and I'm
projecting. Refer to Strunk & White. I may have
to go back and read that, myself. ???

mailto:whil@whilhentzen.com

	Data Munging with Python, Part 2 – Handling Files
	Some Basic Python Philosophy
	There's SO MUCH to Learn!
	Being Pythonic
	Spelling Things Out
	Sample Code Notes

	Some Basic Python Constructs
	Logic Structures - IF
	Logic Structures - Loops
	UDFs
	Passing Parameters

	Project 1: Working with Files
	Opening Files
	Processing a File
	Writing to a File
	Optimizing File Opening

	Project 2: Working with Strings
	Counting Lines
	Determining shortest/longest lines
	Determining columns in a line
	Where is a specific character in a line?
	Where to find the nth char in a line?
	How to pull a substring out of a line?

	Project 3: Splitting Chunks
	Under the hood of the files
	Building the industry files
	Parsing the PK Columns
	Parsing a 192 Column Chunk
	Assembling the PK and 192 Column Chunks

	Source code
	Project 1 (Working with Files):
	Project 2 (Working with Strings):
	Project 3 (Splitting Chunks)
	Author Profile

