
Data Munging with Python,
Part 3 – Writing to Files
Whil Hentzen

I know this will come as a shock to you, but once
in a while, you'll run into a data-oriented situation
where Visual FoxPro isn't going to cut it. In a
previous article, I discussed the situation where
an incoming data file exceeded VFP's 2 GB/.DBF
capacity. We used SQLite to import thaa multi-
gigabyte table.

But even that solution won't work in some
situations. Another component of that project
involved several multi-gigabyte text files, several
of which contained several thousand columns.
You read that right, several thousand. In case
you're wondering, yes, E.F. Codd is rolling in his
grave right now, and Chris Date is muttering,
“Shoot me now.” Even SQLite chokes on the
CREATE TABLE statement that includes 4,300
column defs, surprise, surprise.

Last issue, I showed you how to build scripts that
handled text files in a variety of ways. Being able
to manipulate them is in and of itself not very
useful unless you're doing basic statistical
gathering. This time around, we're going to write
the results of our manipulations back to disk,
creating both text files as well as .DBFs.

Last month we worked with a file that contained
data for multiple industries, side by side, and
learned to grab a chunk for a single industry out
of a single line of that file. Once we were able to
parse the data, the next step is to write the results
out to disk. Specifically, we want to create
separate files for each industry, just like they
should have been created in the first place. We
have two ways to go about this.

One way is to roll through the file and process
each line for the first industry, writing out a
subset of that line for that industry, line after line,
until a file for that industry has been completely
processed. Then go back to the top of the file and
roll through the file a second time for the second
industry. Then repeat again for the third industry,
and so on. While we are only processing each
input line once, we're spinning through the input
file multiple times, once for each industry. You

can think of this as serial processing, one file at a
time.

Another way is to process each line in the file
once, parsing out a part of the line for the first
industry, writing to that industry's file, then
parsing out another part of that line for the second
industry and writing to *that* industry's file, until
that line has been completely processed. Then and
only then move to the second line, and repeat the
process.

The tradeoff is that while we're only
processing the input file once, we are writing to
each industry file for each line. Is there a cost to
switching handles? This is more akin to parallel
processing, where we're working with multiple
files at the same time.

We'll use our million row file to acquire some
timing data. Finally, we'll also write those output
files to DBFs, since that's the format our user is
expecting. And we'll look at a bit of double-
checking our results as well.

We're also going to ease you out of the
JetBrains IDE and into a more “Pythonic” way of
development, using IDLE, that is, with an editor
in one window and running the results in another.

Let's do that first.

Setting up our IDLE environment
So before we get to the coding stuff, we're going
to address the development environment again.
This is an important topic, because it's where
you're going to live, and there are a multitude of
choices. I picked a full-featured IDE like JetBrains
to give you a comfortable starting point, but it's
generally not how the Python community works.

Instead, Python developers typically use
several programs working in concert, using the
operating system as the “development
environment” as opposed to a single program
running inside the operating system. The first
program is a text editor, of course. A second is the
Python interpreter, used to run the program
you've just entered. A third would be a debugger,
perhaps, or a separate tool to display results.

A nice intermediate step to getting to that
type of distributed development environment is

to use the Python wrapper (they call it a 'GUI', but
you and I will snicker) called IDLE. (I mentioned
it briefly in the first article in this series.) IDLE
comes along for the ride when you install Python.
It functions very much like the bare Python
interpreter, but with a few bells and whistles that
are nice.

Start IDLE via the Start Menu | Python |
IDLE as shown in Figure 1.

Figure 1. Calling IDLE.

Doing so will bring up IDLE, as shown in
Figure 2.

Figure 2.

You'll likely want to change IDLE's default
folder; I have a subfolder in my 'dev' folder
named 'devp' where all my Python projects live.

Doing so means that you can open a Python
file with IDLE via the File menu. Doing so opens
the file in the IDLE text editor, as shown in Figure
3.

Figure 3. The IDLE editor.

One feature that's immediately useful is the
fact that you can run your script simply by hitting
F5. The results will display in the Python shell
window, as shown in Figure 4.

Figure 4. Running a script in IDLE produces the results in the
Python shell.

Note that you don't have to have the Python
shell window open in IDLE first – if it's not there,
it'll be opened automatically.

The Python shell window will also display
some debugging feedback.

Why bother?
You might be wondering why it's important to be
able to simply your development environment.
Let me tell you a quick story.

As I was presenting this topic to a user group
a while back, I ran into an interesting situation.
My laptop wouldn't connect to the projector, and
there I was, in front of room full of people who
had come specifically to see this presentation.
Yeah, not much pressure.

“How hard could it be to move your code to
someone else's machine?” you're asking.

Well, in the VFP/Windows world where
everyone has reasonably homogenous
environments, it would potentially be easy. Sure,
anyone who has had to struggle with all of the
myriad Windows issues such as incompatible
drivers, missing ActiveX controls, DLLs that are
out of date, well, perhaps not as easy in real life.
But still, we're all running the same IDE and can
rely on the tools all being there.

But Python isn't like VFP on Windows. First,
it runs on everything, so in that room there were
Windows boxes, Mac boxes, and Linux boxes. I'm
sure somewhere in the back, someone had a
portable SparcStation or a Commodore 64, just
because they could. And even on the same type of

box, people were running a variety of
environments.

Fortunately, having transitioned from
PyCharm projects to simple .py scripts, I was able
to copy my scripts to a thumb drive, stuff it into
the host's Mac, and with a little bit of keyboard
fumbling (did they have to rename *every* key?),
run each of my scripts right off of the thumb
drive. If I had been wedded to PyCharm, I would
have been sunk.

This Month's Challenge
To reiterate, we have a text file with zillions of
lines of similar data. Each line consists of two
columns that act as a composite primary key for
the entire row, and then several sets of fields
whose format and structure are identical. Each set
represents a different industry. The sample data
file included with this month's source code has
two lines, both of which have 11 sets of fields. The
file in toto has approximately 26,000 characters,
meaning each row is over 13,000 characters long.

We want to create 11 files, each of which has
the two columns, and then one industry's set of
fields.

The input file is named 'test002rows.dat'.
We'll parse this file two different ways. First we'll
spin through the file once for each industry,
producing a single industry file each time, in
essence, serial processing. Those output files will
be named 'serial_indNNN.txt' where the NNN is
an identifier for an industry.

Then we'll spin through the file just one time,
processing a row and writing to each of the 11
industry files while processing that row, in
essence, parallel processing. These files will be
named 'parallel_indNNN.txt'.

Serial Processing
(one industry file at a time)
We have all the tools we need to process the input
file. Let's look at the pseudo-code for this routine.

1 initialize starting variables
2 initialize a list that contains the
 industry identifiers
3 for each item in that list,
 perform the following
4 - create a filename for the industry
5 - open the input file
6 - open the output file, with a write flag
7 - for each line in the input file,
 perform the following
8 - extract the first two columns
9 - extract the columns for the current
 item's industry
10 - write the composite key columns
 and the industry columns
 to the output file
11 - close the output file
12 - close the input file

1 Initialize starting variables
We'll need some basic data to get started. First,
stuff the input filename to a variable. In the
production version, naturally, this program spins
through a series of input files. For expediency's
sake, I've hard-coded the name and stored it to a
variable.

Since one of the goals of this article is to
determine which process, serial or parallel, is
faster, we'll set a timer.

And, finally, it's inevitable that we'll run into
problems as we write this routine. Including
print() statements throughout the code will help
us trace the progress and debug what is going
wrong. However, it's a waste of time to write a
quick print() statement, use it while debugging a
certain problem, and then delete it. It's quite likely
that we'll want to be able to use print() statement
again later. So I'll initialize a GoPrint variable that
can will enable us to turn our print() statements
on and off in a single location.

filenameext = 'test002rows.dat'
startsec = time.time()
GoPrint = 1

2 Initialize the industry identifier list
In the production version of this application, there
were dozens of input files, each of which
contained data for a set of industries. One set was
professional services, another was heavy
manufacturing, a third was farming/fishing, and
so on. Thus, there was a master file that contained
the industry identifiers. Continuing our quest for
expediency, I've hard-coded the identifiers in a
list instead of reading them in from that master
file.

Remember, when you see 'Python list', think
'one-dimensional array'.

Indlist = ['401','402','403','404','405',
 '406','406a','407','408','408a','408b']

3 For each item in that list
Next, we'll spin through each item in the list. In
this example, we know how many items are in the
list, but in the production version, the number of
items will vary, so let's grab that value
programmatically instead of hard-coding it.

howmanychunks = len(indlist)
print('Serial process, go through input file
 multiple times')
for index in range(howmanychunks):

I've included a print statement that will echo
to the Python shell, as a starting breadcrumb so
that we can trace the execution of our program.

In the following sections, I've included either
one or two hyphens in the section name, to

provide a visual clue as to the level of the
hierarchy we're in: one hyphen for items in the
industry list, two hyphens for items in the input
file.

4 - Create a filename for the industry
First, grab the item out of the industry list. Next,
build a filename from that item. Finally, in order
to aid in debugging, print the details of the newly
created filename.

indname = indlist[index]
filenameextout = 'yserial_ind_%s.txt' %
(indname)
if GoPrint:
 print('industry #:', index+1, 'indname:',
 indname, 'filenameextout:', filenameextout)

5 - Open the input file
We're opening the input file each time we process
an industry.
txti=open(filenameext)

6 - Open the output file, writeable
Similarly, open the output file each time we
process an industry.
txto=open(filenameextout, 'w')

7 - - For each line in the input file
Then, work through each line in the input file.

linenum = 1
for oneline in txti:

For each line ('oneline') in the input file...

8 - - Extract the first two columns
First, determine the length of the current line. This
has to be done for each line, because each line
could be a different length, depending on the data
in it. There will be the same number of columns,
but the size of a data element in any given column
may vary.

Calculate the positions of the pipes after the
first and second columns, and then extract the
data between them.

linelen = len(oneline)
firstpipepos = oneline.index("|")
secondpipepos
 = oneline.index("|",firstpipepos+1,linelen)
geoid = oneline[:firstpipepos]
occ = oneline[firstpipepos+1:secondpipepos]

9 - - Extract the current item's columns
The index is the number of industry. Use it as the
multiplier to calculate the first and last pipes
demarcating the range of columns for the
industry. Then pull the whole slew of columns
from the current line into a string.

The findnth function, discussed in last
month's article and defined at the beginning of the
script, is used to determine the positions of the
start and end pipes.

startpipenum = 2+192*(index)
endpipenum = 2+192*(index+1)
startpipepos
 = findnth(oneline,'|', startpipenum)
endpipepos = findnth(oneline, '|', endpipenum)
thischunk = oneline[startpipepos+1:endpipepos]

10 - - Write the columns
Assemble the first two columns and all of the
columns for the current industry into a string and
write that to the output file.

strtodump =
 geoid + '|' + occ + '|' + thischunk +
 chr(13)
txto.write(strtodump)

11 - Close the output file
Once done processing all of the lines in the input
file, close the output and input files.
txto.close()

12 - Close the input file
txti.close()

Notes
You'll notice the variable 'linenum' initialized
before processing each line in txti, and then
incremented for each line. This variable isn't
needed, strictly, for processing, but is used as a
flag to aid in debugging.

Parallel Processing
(all industry files simultaneously)
While the serial processing works just fine, there's
likely a little voice in the back of your head
saying, “That seems wasteful, opening and
closing the input file for each industry, and
spinning through it over and over. Particularly if
the file is really long. Would it be faster to just
open the input file once and process each line
once?”

That's a good question, and no fair skipping
to the end to find out the answer.

There's another reason I bring this idea up,
and that's to learn more about processing data
files. The parallel processing routine is going to
require slightly different tricks.

Let's look at the pseudo-code for this routine.

1 initialize starting variables
2 initialize a list that contains the
 industry identifiers
3 open the input file
4. for each line in the input file
5 - extract the first two columns
6 - for each item in the industry list

7 - determine start and end pipes for
 the industry columns
8 - extract the columns for the current
 item's industry
9 - create a filename for the industry
10 - open the output file, with a write flag
11 - write the composite key columns
 and the industry columns
 to the output file
12 close output file
13 close input file

1 Initialize starting variables
Just like with the serial routine, we'll initialize
some variables. In this routine, we'll set two
'GoPrint' flags, one for each time a line is
processed and the other for each industry within a
line.

filenameext = 'test002rows.dat'
startsec = time.time()
GoPrintLine = 0
GoPrintIndustry = 0

2 Initialize industry identifiers list
In this routine, we're going to grab the number of
industries right away.

Indlist = ['401','402','403','404','405',
 '406','406a','407','408','408a','408b']
howmanychunks = len(indlist)

3 Open the input file
Since we're processing the input file just once,
we'll open it right away.
txti=open(filenameext)

4 For each line in the input file
Once open, we'll start to processing each line in it.
for oneline in txti:

Once we start looping, similar to the serial
routine, in the sections that follow, I've included
either one or two hyphens in the section name, to
provide a visual clue as to the level of the
hierarchy we're in. But this time, one hyphen is
for items in the input file and two hyphens for
items in the industry list.

5 - Extract the first two columns
In this routine, we just have to grab the first two
columns that act as a primary key once.

linelen = len(oneline)
extract first two cols
firstpipepos = oneline.index("|")
secondpipepos =
 oneline.index("|",firstpipepos+1,linelen)
geoid = oneline[:firstpipepos]
occ = oneline[firstpipepos+1:secondpipepos]

We'll store the columns to 'geoid' and 'occ'
variables and use them over and over again.

6 - For each item in the industry list
Unlike the serial routine, 'index' will roll through
one item in the industry list. It acts as a counter.
'index' will range from 1 to however many
industries there are in this particular input file.
for index in range(howmanychunks):

7 - - Determine start and end pipes
There are 192 columns in an industry chunk, so
the startpipenum and endpipenum can be
calculated by using the counter that represents the
industry.

The findnth function, again, is used to
determine the positions of the start and end pipes.

startpipenum = 2+192*(index)
endpipenum = 2+192*(index+1)
startpipepos =
 findnth(oneline,'|', startpipenum)
endpipepos = findnth(oneline, '|', endpipenum)

8 - - Extract current item's columns
Once we have the starting and ending positions,
the string containing all 192 columns for the
current industry can be extracted.

Then that string is added to the 'geoid' and
'occ' primary key fields to create the string to
write to an output file.

thischunk =
 oneline[startpipepos+1:endpipepos]
strtodump =
 geoid + '|' + occ + '|' + thischunk +
 chr(13)

9 - - Create a filename for the industry
Since we're processing each output file, we need
to determine what the name of the output file for
the industry in question is.

indname = indlist[index]
filenameextout =
 'bparallel_ind_%s.txt' % (indname)

10 - - Open the output file
Once we have the output filename, open it for
writing. Use the 'a' flag to append instead of
overwriting.
txto=open(filenameextout, 'a')

11 - - Write the columns
Then write the string for the industry to the
output file.
txto.write(strtodump)

12 Close output file
The output file is closed each time the next one is
opened, but the last one stays open. Once done
with every line in the input file, close the last
output file.

txto.close()

13 Close input file
txti.close()

Verifying Results
Tis an amateur programmer who assumes that,
once his program runs without throwing errors,
he's done. It may be writing to the various
industry files without choking, but how do we
know it's writing the correct data? I'm sure each of
you has had the experience where you look at an
output file and find some sort of silly results, like
the same row being replicated 107,000 times. Let's
make sure that we didn't do something foolish
like truncate the last character of each chunk due
to a one-off error.

The first thing we can do is a visual
inspection. Difficult with an input file that has
over 13,000 characters in each row, but not
impossible. Open up test002rows.dat and
serial_ind401.txt in matching text editor windows,
and scan through, as shown in Figure 5. The key
numbers to look for are the first industry column
and the last.

Figure 5. Comparing the original input file and one of the
industry output files.

Next, open up the last industry file,
serial_ind408b.txt, and compare those values, as
shown in Figure 6.

Figure 6. Comparing the end of the original input file and the
last industry file.

Now we've verified that the first and last
industries are good, at least in the first row. It's
possible that formatting changes in the middle of
the file might have caused problems, so next,

The second test we can perform is matching
up the file produced for a single industry with
both routines. The files should be identical, so
compare the file sizes. They may be off by one
character due to an EOF marker in one file but not
the other, so if they're close, or if they're not, open
them both in text editor windows and see what
the difference is.

So now we've verified that the files are the
same. But visual verification only goes so far,
particularly because these files are so wide and so
long.

If the input file has a total row, it would be
possible to compare the totals of the input file and
the output files, but in this case, there are no total
rows, so we're out of luck.

One final test would be to do a scan through
the contents of each column, ensuring that there is
data in at least some of the rows. A million row
file with zeros in every row might be a clue that
something went wrong.

There's really no more verification that can be
done on this level. In the next part of this series,
we'll move the data from text files into a different
repository that can be examined more robustly.

Timing Results
The reason we did the file extraction in two
different ways was to dig up empirical evidence
about which way would be faster. Interestingly
enough, my original hypothesis was wrong.

I ran the serial and parallel routines against a
600 row file with 11 industry sets, long enough
gain some timing but not long enough to need to
go get popcorn.

Processing the input file over and over again
was actually faster as shown in Figure 7.

Figure 7. Comparing the processing times of the serial and
parallel routines.

Next time, we'll move write these files to
DBFs.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Data Munging with Python, Part 3 – Writing to Files
	Setting up our IDLE environment
	Why bother?

	This Month's Challenge
	Serial Processing (one industry file at a time)
	1 Initialize starting variables
	2 Initialize the industry identifier list
	3 For each item in that list
	4 - Create a filename for the industry
	5 - Open the input file
	6 - Open the output file, writeable
	7 - - For each line in the input file
	8 - - Extract the first two columns
	9 - - Extract the current item's columns
	10 - - Write the columns
	11 - Close the output file
	12 - Close the input file
	Notes

	Parallel Processing (all industry files simultaneously)
	1 Initialize starting variables
	2 Initialize industry identifiers list
	3 Open the input file
	4 For each line in the input file
	5 - Extract the first two columns
	6 - For each item in the industry list
	7 - - Determine start and end pipes
	8 - - Extract current item's columns
	9 - - Create a filename for the industry
	10 - - Open the output file
	11 - - Write the columns
	12 Close output file
	13 Close input file

	Verifying Results
	Timing Results
	Author Profile

