
Integrating Word's
Spellcheck with Your VFP
Application
Whil Hentzen

I recently received a request to "integrate spell
check into our application". When I asked the
customer for details past this vague, one phrase
description, they simply responded, "Some of our
users are pretty bad spellers. So we'd like them to
be able to check what they type before they do
things like send letters to people outside the
organization." With that set of enhanced
specifications now in hand, I set off to see what
options I had.

This article describes both the journey I went
through, choosing features and making choices
between alternatives, as well as the details of the
code I ended up with.

When adding a standard but potentially
complex feature like spellcheck, the first thing we
considered was the 'buy or build' fork in the road.
Considering my customer's reticence at adding
ongoing licensing costs to their application, I first
looked at the 'build' option.

The second thought that we all have, as the
mantra "Was that written in FoxPro? No, but it
could be!" is never far from our minds, is to roll
one's own. This venture, like many things, is one
of those "How hard could it be?" projects that
reminds me of The Devil and Simon Flagg story

http://simonsingh.net/books/fermats-last-
theorem/wacky-fermat-stuff/devilish-short-
story/

where there's never really an end. The
problem in this quest is two-fold.

First, there's the search for an appropriate
(and free) spelling dictionary. You can't just grab
the Webster or Oxford dictionary off the Web, as
you'd still have to parse the words themselves
from the pronunciation and definitions of each
word. But as much a pain as that would be, that's
the easy part.

The hard part is coming up with good
suggestions for words that aren't found in the
dictionary.

Let's suppose the user typed the word 'piar'.
It's relatively easy to come up with suggestions
that involve simply switching the letters around,
so that 'pair' is offered as a potential correction.
But what about similar words? A good
mechanism should also provide 'pliar' and 'pier',
and few developers have the in-depth knowledge
of heuristics to do that type of work. It's simply
not that easy.

So after just a few minutes, I decided that I'd
let someone else do the work. Thus, my next
thought was one of a variety of third-party
solutions, such as an Active-X control or a third-
party spell-checker such as FoxSpell. Those that
were still supported all required royalty or
licensing fees, some in the hundreds of dollars per
user. That wasn't going to fly with my customer.

The first 'freebie' option was native Visual
FoxPro. Earlier versions came with a spellchecker
application, spellchk.app, but it's not included
with VFP 9. And for those of you who are
thinking "What if I just found a copy of an earlier
version of VFP and used it from there?", well, no
such luck. Spellchk.app was never allowed to be
distributable with your applications due to
licensing restrictions of the dictionary that came
with it.

There were also a number of 100% VFP-code
solutions available on the Web for free, some
more robust than others, but all relying on third-
party dictionaries of one sort or another as well as
home-grown heuristics for determining matches
for a misspelled word. Support for these ranged
from minimal to non-existent, and many had been
abandoned years ago. And, worse, for lack of a
better term, the solutions that were still available
all seemed (sorry for the technical term) 'icky'.

The last option I considered was using office
automation to hook into Microsoft Word's spell

checking engine, letting it do all the work of
detecting misspellings and suggesting corrections,
and simply returning the results to the user.

This third avenue seemed the most promising
- since this particular customer was a 100%
Microsoft shop, it was a certainty that each user
would have a recent version of Microsoft Word
installed on their machine. Why not simply take
advantage of Word's native spell-checking
capability? Leave the dictionary and heuristics to
them, and spend my time working on the
interface for my customer's users.

Tamar Granor wrote an excellent article
describing the technical details involved in
accessing Microsoft Word's spellchecking
mechanism from VFP.

http://www.tomorrowssolutionsllc.com/Articles/
Checking%20Spelling%20in%20VFP.PDF

I won't repeat the details of her article, rather,
this article describes how I incorporated Tamar's
engine into a user interface and how I connected
that mechanism with my customers' application, a
particularly challenging task given a lack of
specifics from my customer.

General Requirements
Although the challenge was initially presented
simply, subsequent discussions revealed a few
specifics.

First, the spellcheck was not going to be
universally available; only selected fields on
certain forms would have spellchecking capability
available.

Second, as is common for corporations with
industry-specific jargon, the user wanted to be
able to switch between a standard dictionary and
a custom dictionary that contained pre-defined
words for the company. In this case, the jargon
was primarily medical terms.

Third, the user wanted to be able to add their
own words as they came across them.

Finally, the user wanted to be able to specify
certain settings, such as ignoring words that were
all caps (in this case, those would be abbreviations
and acronyms), for the entire spellcheck
implementation.

The Engine
Tamar's engine consists of several pieces:

1. Grabbing a string to spellcheck
2. Checking to see if Word was already

running, and instantiating Word if it wasn't
3. Checking each word in the string
4. Storing each misspelled word, together

with Word's suggestions, to a data structure for
presentation to the user

My wrapper around Tamar's engine consisted
of two pieces. The first was to obtain a string to
check from the application. The second was the
presentation of the resulting choices to the user,
allowing them to make a choice, and stuffing their
choice back into the calling application.

Now, where do these engine pieces go? What
does the UI consist of? Let's look.

The User Interface
While designing the UI, I came across several
issues for which decisions had to be made.

1. How is the spellcheck launched?
Either it is started up when the form is opened,
and then lies in wait and dynamically checks as
the user types, or the user explicitly launches the
spellcheck by, say, right-clicking on a control that
contains a string to be checked.

2. What to check?
Either spellcheck can check one user-specified
control on the form or it can do all controls.
Interestingly, this is choice can be independent of
how the spellcheck is launched. Obviously, if the
user explicitly launches the spellcheck on a certain
control, that's the control being checked.

On the other hand, if the spellchecker is the
'lies in wait and checks everything' variety, each
control can be flagged to be checked or not via a
property setting.

3. What to check in a control?
Either the spellchecker will examine every word
in the control, or just a user-selected word in the
control.

4. If user launched, what action is
performed?

When the user right-clicks on a control, what
happens? The spellcheck function might be
launched immediately, checking the string and
returning suggestions if misspellings were found.
Or it might display a context menu that gives the
user choices, such as

 Spellcheck using standard dictionary

 Spellcheck using custom dictionary

 Configure spellcheck settings

The third menu option would be where the
user could change parameters that controlled how
the spellcheck worked, either locally or globally.

5. How to display potential
misspellings and suggested
corrections?

The universal technique used in applications like
word processors and browsers is to flag each
word not found in the dictionary with a red
squiggly underline. However, this is VFP, where
this type of red underline mechanism isn't native
to the base control set. Thus, a set of custom text
and edit controls that could be configured to
display their contents in such a manner would be
required. Due to the difficulty in locating such a
toolset that is current and actively supported as
well as avoiding licensing requirements, that's
simply not going to happen.

Thus, an alternate interface would be needed,
and the choices varied, depending on what was
being checked.

Ultimately, there were two choices available.
The first was a context menu that displayed
potential misspellings for a single word, just like
is commonly done in other applications. The other
was to launch a form that displayed all misspelled
words in a control together with their suggested
corrections.

Summing up
That's a lot of alternatives.

This article isn't intended to exhaustively
catalog every possible combination of alternatives
and demonstrate implementations. Rather, I'll
discuss the choices my customer made and how
they were implemented.

For this application, we opted to
1. Explicitly launch the spellchecker
2. On a single field
3. Check all the words in the control
4. If words in the string are not found in the

dictionary, a 'Spell Check Choices' form is
launched

5. This form contains two columns; the first
listed the words that were identified as
misspelled, the second listed the suggested
corrections.

Given these choices, here's how I incorporated
the engine into the interface.

Implementation
First, we've got a form with one or more fields to
be spell checked, and the user will right-click on
the controls to be checked, one by one. If, for each
control, there are one or more words in the
control's string not found in the dictionary, a form
will be displayed that lists those words and their
suggested corrections.

Under the hood, I added a property,
lAllowSpellcheck, to the base class of each control

(text and edit) that might be checked. The instance
of a field to be checked will have the property set
to true. Then the right-click method will check the
property and if true, run the spell check routine.

if this.lAllowSpellcheck
 do form xspellcheckchoices with ;
 thisform, this
endif

This flag allows the spellchecking to be
turned on or off for certain fields as desired.

The call sends two parms to the Spell Check
Choices form. The first is a reference to the calling
form and the second is a reference to the control
being checked. The second is used to grab the
value of the string to check, and then together
with the first, is used to create a fully qualified
reference to the control if the value in the control
has to be updated with a correction.

The init() of the spellcheck data form
determines if there are misspelled words and
returns true or false as appropriate. If false (no
misspelled words are found in the string), the
form isn't instantiated. Let's look in more detail.

First, the init() receives the parms and assigns
them to form properties, and does some interface
nudging:

lpara loForm, loObject

thisform.oForm = loForm
* object might be txt or edt
thisform.oObject = loObject

* clear the message from the caller
wait clear
* update the Spell Check Choices form caption
* to reflect what's being checked
thisform.Caption = transform(loForm.name) ;
 + " - " + transform(loObject.name)

* position the Spell Check Choices form below
* the control being checked so that the user
* can see changes being made

* add 10 for just a nudge
* add 23 for the title bar height
this.Top = loForm.top+loObject.top ;
 +loObject.height +23+10
this.left = loForm.left+loObject.left+10

Now let's look at the pieces of the engine.

1. Grab a string to spellcheck
The value of the control is determined.

* grab the string to check
local lcStringToCheck
lcStringToCheck = loObject.value
if empty(lcStringToCheck)
 return .f.
endif

Technically, this could be performed earlier,
so as to run less code before deciding whether or
not to instantiate the form, but the difference is

trivial, and it's easier to keep all the spell check
code together.

2. Check to see if Word was already
running, and instantiating Word if
it wasn't

Since Word can take a bit to start up, even behind
the scenes, a Wait Window is a good idea. Then
clear it once started.

try
 * Word is running
 thisform.oWord = ;
 getobject(,"Word.Application")
catch
 * Word is not running, start it up
 wait window nowait ;
 'Loading spellchecker in background...'
 thisform.oWord = ;
 createobject("Word.Application")
endtry
wait clear

3. Spellcheck each word in the string
Once Word is running, it's time to make the magic
happen. The CheckSpellingOfString() method is
called next. If this method returns true (the words
are all correct), the init() returns false and the
Spell Check Choices form isn't instantiated.

if thisform.CheckSpellingOfString(;
 lcStringToCheck)
 * lcStringToCheck was clean
 return .f.
else

If, on the other hand, there are misspelled
words, the CheckSpellingOfString() fills fills a
form array property with the results and stuffs the
number of misspelled words in the form property
iSuggestionCount.

Then the init() fills the listbox from the form
array. Before we continue with the user's actions,
let's take a quick look at the actual method,
CheckSpellingOfString(), that does the spell
checking.

4. Store each misspelled word,
together with Word's
suggestions, to a data structure
for presentation to the user

This method is comes straight from Tamar's
article, modified just slightly to handle the needs
of interfacing with the Spell Check Choices form.

* returns .t. if words are all good
lparameters lcStringToCheck
assert vartype(lcStringToCheck) = 'C' ;
 message "SpellCheck: First parameter ;
 (cString) must be character"
if vartype(lcStringToCheck) <> 'C'
 return .f.
endif

local lReturn, iWord

local oSuggestions as Word.SpellingSuggestions
local oSuggestion as Word.SpellingSuggestion
dimension this.aSuggestions[1]
thisform.aSuggestions[1] = ""
thisform.iSuggestioncount = 0

if empty(lcStringToCheck)
 lReturn = .t.
else
 with thisform.oWord
 .Documents.Add()
 lReturn = .T.
 thisform.iNumOfWordsInStringToCheck ;
 = getwordcount(lcStringToCheck)
 thisform.iNumMisspelledWords = 0
 for iWord = 1 to;
 thisform.iNumOfWordsInStringToCheck
 cWord = getwordnum(lcStringToCheck,;
 iWord)
 oSuggestions =;
 .GetSpellingSuggestions(cWord)
 if oSuggestions.Count <> 0
 thisform.iNumMisspelledWords =;
 thisform.iNumMisspelledWords + 1
 lReturn = .F.
 * Parse the list, put into the array
 for each oSuggestion IN oSuggestions
 thisform.iSuggestionCount = ;
 Thisform.iSuggestionCount + 1
 dime This.aSuggestions[;
 This.iSuggestionCount, 3]
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 1] = ;
 iWord
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 2] = ;
 cWord
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 3] = ;
 oSuggestion.Name
 endfor
 endif
 endfor
 endwith
endif
return lReturn

This routine is pretty straightforward, taking
the string passed to it, splitting it into words via
VFP's GetWordCount() function, and then using
Word's GetSpellingSuggestions() method to stuff
suggestions into an object. If there are suggestions
(meaning the word was determined to be
misspelled), the list is parsed into an array
property of the form that is used to populate the
listbox. Finally, either true or false is returned,
depending on if a word was misspelled.

5. Present choices to user
If CheckSpellingOfString() returns false, the ELSE
segment in the init() of the Spell Check Choices
form is fired. Code in this segment fills the listbox
in the form with the misspelled words and their
suggested corrections from the array property.

else
 * fill the listbox with two columns
 * first has misspelled word
 * second has suggested corrections
 if thisform.iSuggestionCount > 0
 dimension thisform.lst.aItems[;
 thisform.iSuggestionCount,2]
 for li = 1 to thisform.iSuggestionCount

 thisform.lst.aItems[li,1] = ;
 transform(;
 thisform.aSuggestions[li,2]) + ' '
 thisform.lst.aItems[li,2] = ;
 transform(;
 thisform.aSuggestions[li,3])
 next
 thisform.lst.requery()
 endif
endif

This concludes the init(). The form is then
displayed to the user, with the list of potential
misspelled words and the suggested corrections.
The user will execute an action in the UI to replace
the misspelled word with their choice.

User Interaction
Now back to the user interface. As mentioned
earlier, double-clicking on a choice in the listbox
will stuff the control in the calling form with the
selected value:

if this.ListIndex = 0
 messagebox("Please select a row in the
 list first.")
else
 thisform.iHowManyHaveBeenClicked = ;
 thisform.iHowManyHaveBeenClicked + 1

 local lcNaObject, lcWordToFind, ;
 lcWordToReplaceItWith, lcStrToExecute
 lcNaObject = thisform.oForm.name + '.' ;
 + thisform.oObject.name + '.value'
 lcWordToFind =;
 alltrim(this.aItems[this.ListIndex,1])
 lcWordToReplaceItWith =;
 alltrim(this.aItems[this.ListIndex,2])

 lcStrToExecute = lcNaObject ;
 + '=strtran("' + &lcNaObject + '", "' ;
 + lcWordToFind + '", "' ;
 + lcWordToReplaceItWith + '")'
 &lcStrToExecute

 if thisform.iHowManyHaveBeenClicked ;
 = Thisform.iNumMisspelledWords
 * automatically close the form once we've
 * taken care of every word
 thisform.Release()
 else
 * don't close yet
 endif
endif

The iHowManyHaveBeenClicked form
property keeps track of how many misspelled
words have been processed. Once the last word
has been double-clicked on, the form
automatically closes by itself.

Once the user is done with choosing
replacements, they can hit escape to close the
form. In the form's KeyPress method:

lpara nKeyCode, nShiftAltCtrl
if nKeyCode = 27
 * escape, to close the form when done
 thisform.Release()
endif
dodefault()

Returned to the calling form, the original
control still has focus, and the contents have been
corrected as the user specified.

The source code for this implementation
included in the downloaded consists of

 base.vcx - a class library for the form and
the controls,

 spellcheckdemo.scx - a form that contains
the controls with the misspelled words, and

 spellcheckchoices.scx - the form that
displays the misspellings and suggested
corrections.

Note that the source code included with this
article does not match exactly with the source
code snippets in this first half of this article. The
ERs discussed in the second half of the article
have been incorporated in the source, so the
source demonstrates the final product. The code
for the ERs discussed in this article are marked
with "ER 4" type annotations.

To run the demo,

do form SpellCheckDemo

The form will display. The demo form has a
default value inserted into the textbox with a pair
of errors as shown in Figure 1.

Figure 1. The Spell Check Demo form.

Right-clicking anywhere in the textbox will
call the Spell Check Choices dialog, as shown in
Figure 2.

Figure 2. The Spell Check Choices dialog opened when
spelling errors are detected.

Double-clicking on a row in the list will
substitute the suggested replacement for the
misspelled word in the source field, as shown in
Figure 3.

Figure 3. The corrected phrase.

Escaping out of the Spell Check Choices
dialog before handling every suggestion will close
it. Upon handling the last suggestion, the dialog
will automatically close.

Enhancement Requests
As every developer knows, applications never get
smaller. The minute you deliver a build, the user
comes back with "This is great, but..." and this
simple spell checker is no different. Within days
of using the tool, my customer came back with a
number of enhancement requests.

1. Remove all other suggestions from
the list once one has been
chosen.

Frankly, this should have been anticipated during
design, implementation and testing. A user not
paying attention might double-click on a
suggestion, and then double-click on another
suggestion for the same word. The solution is to
remove the rest of the rows in the list box for that
word, and then refresh the listbox.

In the listbox's double-click method's 'else'
clause, we simply compare the current word to
each row in the list and delete the row if they
match. We run it in reverse so that the deleted
rows don't interfere with the next comparisons.

* ER 1
* don't close yet
local liHowManyRows, liHowManyDeleted
liHowManyDeleted = 0
liHowManyRows = alen(this.aItems,1)
for li = liHowManyRows to 1 step -1
 if alltrim(upper(this.aItems[li,1])) ;
 == alltrim(upper(lcWordToFind))
 =adel(this.aItems,li)
 liHowManyDeleted = liHowManyDeleted + 1
 endif
next
dimension this.aItems[liHowManyRows -
liHowManyDeleted,2]
this.Requery()

2. Provide a setting to ignore words
that are in all caps.

Words that are in all caps can indicate one of three
things. Either the typist is 90 years old and is still
used to TYPING IN ALL CAPS, or the typist had
hit the Caps Lock key accidentally, or the word is
an acronym, and should stay in all caps.

In the last case, it'd be nice to have the word
automatically ignored. For demonstration
purposes in this article, I added a Ignore Words in
All Caps checkbox to the Spell Check Demo form
and store the value to a form property,
lIgnoreWordsInAllCaps, that is used in place of
an actual setting in the application. See Figures 4
and 5 to see how the setting affects what is
displayed in the Spell Check Choices dialog.

Figure 4. Misspelled words in ALL CAPS are included if the
checkbox is unchecked.

Figure 5. Misspelled words in ALL CAPS are excluded if the
checkbox is checked.

The value of the Spell Check Demo form's
property is captured by the Spell Check Choices
init():

* grab the IgnoreWordsInAllCaps property
* from the caller
local llIgnoreWordsInAllCaps
llIgnoreWordsInAllCaps = ;
 loForm.lIgnoreWordsInAllCaps

and is then passed to the
CheckSpellingOfString() method, like so:

if thisform.CheckSpellingOfString(;
 lcStringToCheck, llIgnoreWordsInAllCaps)

The CheckSpellingOfString method in the
Spell Check Choices form has then been modified
twice, first for the parameters statement:

lparameters lcStringToCheck, ;
 llIgnoreWordsInAllCaps

and then with a new code segment that
determines whether the word is going to be
checked for spelling errors or not.

* ER 2
* check if word is all caps
if llIgnoreWordsInAllCaps
 * "ignore words in all caps" is true,
 * so determine if this word is all
 * caps, so that we can determine if
 * we need to handle it or not
 if thisform.WordIsAllCaps(cWord)
 * it's all caps, go to next word
 loop
 else
 * word is not all caps, so keep
 * processing this word
 endif
else
 * "ignore words in all caps" is false,
 * so we're going to handle the word
endif

The WordIsAllCaps() method looks like this:

lparameters lcWord

local liNumChars, llWordIsAllCaps, li
liNumChars = len(alltrim(lcWord))
llWordIsAllCaps = .t.

for li = 1 to liNumChars
 lcCharToCheck = substr(lcWord, li, 1)
 liAsciiValue = asc(lcCharToCheck)
 if liAsciiValue > 64 and liAsciiValue < 91
 * between A/Z
 * this letter is caps
 else
 * as soon as we find a letter that
 * isn't A-Z, we're done
 llWordIsAllCaps = .f.
 exit
 endif
next

return llWordIsAllCaps

3. Check for repeated repeated words.
It's easy for a user to get interrupted during data
entry and then repeat a word word without
realizing it. My customer requested a setting
where the field would be checked for any words
that were entered twice in a row.

Indicating to the user that the word was
repeated was not a trivial issue to deal with, as it
didn't fit the existing paradigm of a two column
Choices list. We discussed several mechanisms,
including automatically deleting the second
instance of any word (discarded because there
could be situations where the second instance was

intentional) and using a separate interface to
handle repeated words (discarded due to
increased complexity.)

We decided to include the repeated word in
the first column of the Spell Check Choices
listbox, but not offer a 'correction' in the second
column. Instead, double-clicking on that row in
the listbox would remove the second instance
from the field.

Again, for demonstration purposes in this
article, I added a Flag Repeated Words checkbox
to the Spell Check Demo form and store the value
to a form property, lFlagRepeatedWords, that is
used in place of an actual setting in the
application. See Figure 6 to see how the setting
affects what is displayed in the Spell Check
Choices dialog.

Figure 6. A repeated word is included in the Choices listbox,
with a flag indicating that it's repeated.

Implementation was a little trickier, as the
way the list in the Spell Check Choices dialog was
populated, handled, and cleaned up is more
complex.

The value of the Spell Check Demo form's
property is captured by the Spell Check Choices
init():

* grab the IgnoreWordsInAllCaps property
* from the caller
local llFlagRepeatedWords
llFlagRepeatedWords = ;
 loForm.lFlagRepeatedWords

and is then is added to the parms passed to
the CheckSpellingOfString() method, like so:

if thisform.CheckSpellingOfString(;

 lcStringToCheck, llIgnoreWordsInAllCaps,;
 llFlagRepeatedWords)

The CheckSpellingOfString() method in the
Spell Check Choices form now has an additional
chunk of code that does the checking for repeated
words. We'll assume that we'll be case sensitive.

We go through the entire string, looking at
each word in turn. Once we've grabbed a word,
we then examine the following word to see if it's
the same. If so, we increment
iNumMisspelledWords, the counter for the
number of misspelled words in the string (I know,
that seems odd, I'll explain why in a moment) and
the counter for how many rows are in the list to
present to the user. Finally, we add the repeated
word to the list of words to present to the user.

Note that the list of suggestions to present to
the user uses a form property,
dblClickRepeatMessage, to stuff into the second
column of the listbox. This string (in this article,
"Dbl-click to remove repeat") will be used several
times through the code, and instead of hard-
coding a literal multiple places, it made sense to
put it in one place.

* ER 3
* look for repeated words
* assume case sensitive
for liWord = 1 to
thisform.iNumOfWordsInStringToCheck
 lcWord = getwordnum(lcStringToCheck, ;
 liWord)
 * we have a word in the field
 * now roll through the whole field again,
 * and look for this word in the field
 for liWord2 = liWord+1 TO liWord+2
 lcWord2 = getwordnum(lcStringToCheck,;
 liWord2)
 * if this word in the string matches the
 * word we were looking for
 * stuff into Suggestions array, which
 * will be put into listbox
 if lcWord2 == lcWord
 thisform.iNumMisspelledWords =;
 thisform.iNumMisspelledWords + 1
 thisform.iSuggestionCount =;
 thisform.iSuggestionCount + 1
 dimension This.aSuggestions[;
 this.iSuggestionCount, 3]
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 1] = liWord
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 2] = lcWord
 thisform.aSuggestions[;
 thisform.iSuggestionCount, 3] =;
 thisform.DblClickRepeatMessage
 endif
 next
next

After this is all done, we'll then do the actual
spell checking as described earlier in this article.

Finally, the DblClick method of the listbox
needed to be modified, so that the row would be
removed from the list if the user double-clicked
on it. First, the iNumMisspelledWords variable is
used to track how many rows in the list need to be

considered when deciding whether to
automatically close the form when the last row
has been handled. That's why it is updated for the
repeated rows code segment described earlier in
this ER.

And, second, the code segment that removed
the other choices for the double-clicked words
needed to be modified, since we only want to
remove that one row, has been modified to
include a check for a repeated word scenario:

if alltrim(this.aItems[this.ListIndex,2]) ;
 == thisform.cMsgDoubleClickToRemoveRepeat
 * remove the line with the repeated word
 =adel(this.aItems,this.ListIndex)
 liHowManyDeleted = liHowManyDeleted + 1

4. Automatically execute spellcheck
immediately upon field exit.

First, I added a flag to both the txt and edt classes
that the controls on the demo form are based on.
This property is called
lAutoSpellCheckUponFieldExit and it initialized
to .f.

In the LostFocus of the txt and edt classes, I
added this code snippet:

* ER 4
if this.lAutoSpellCheckUponFieldExit
 wait window nowait 'Checking spelling...'
 do case
 case this.cSpellCheckType = 'FORM'
 do form spellcheckchoices with thisform,
this
 case this.cSpellCheckType = 'POPUP'
 do spellcheckshortcut.mpr WITH thisform,
this
 endcase
endif
dodefault()

Note that we don't ALSO check
this.lAllowSpellCheck as is done in the right-click
method of the txt and edt classes. If this property
is set to true, we do the grown-up thing and
assume that spell check is allowed.

Then, in the Spell Check Demo form, I added
a Auto Spellcheck Upon Field Exit checkbox. See
Figure 7. Checking this box causing the spellcheck
to automatically fire upon tabbing out of either
field.

Figure 7. Demonstrating the Auto Spellcheck feature.

In the click() of Auto Spellcheck Upon Field
Exit checkbox, set the
lAutoSpellCheckUponFieldExit property for each
field to the same value as the checkbox. Note that
this is a 'all or nothing' mechanism used for
demonstration purposes in this article. In my
customer's application, this property was
explicitly set, field by field, as desired, in the
instance of the form.

* ER 4
thisform.lAutospellcheckuponfieldexit = ;
 this.value
thisform.txt.lautospellcheckuponfieldexit = ;
 this.Value
thisform.edt.lautospellcheckuponfieldexit = ;
 this.value

5. Provide a settings dialog to
configure how spellcheck works.

As you could surmise, this was started when the
user asked, way back when, "Can we have a
setting to ignore words that are in all caps?"

The logical question that immediately arose
was "Is this setting user-specific or application-
wide?" The app had a goCust object where all
settings for this application were stored. These
settings came from a table with the structure

cUser c(3)
cSetting c(50)
cValue c(20)

See Figure 8.

Figure 8. The DBF for the system settings table.

Settings that were applicable to everyone had
no value in the user column while settings that

were set on a user-by-user basis had a username
included for that row. Upon instantiation of
goCust, the setting was pulled from the settings
table and stuffed in the goCust object. A sample
settings dialog is shown in Figure 9.

Figure 9. System settings on a local or global basis.

6. Add word to dictionary.
It's not uncommon to have words flagged as
misspelled but are actually legitimate words. One-
off cases can simply be ignored, but if such a
word is encountered regularly, it'd be nice to have
the word automatically be ignored upon
subsequent spellchecks.

All you clever programmers out there
probably thought that the best way to implement
this would be to use a right-click method on a
misspelled word to add it, but this isn't obvious or
necessarily intuitive, nor may it be easily
discoverable. And I should know, because that
was my first thought as well. Watching a user
trying to figure this out on their own (even with a
label on the form saying 'right-click to add to
customer dictionary') showed me that.

So we settled on including a suggestion in the
list below the suggested words, such as "Add
Word to Dictionary".

See Figure 10.

Figure 10. Offering to add misspelled words to a custom
dictionary.

Naturally, if the Add Word to Dictionary
choice is selected, the list is cleared of suggestions
for that word, and then is refreshed per the first
enhancement request.

So that's the interface. But there were a pair of
issues involved that were initially transparent to
the user.

First, does each user want their own custom
dictionary, or should each word get added to a
global dictionary?

Second, under the hood, should the Word
dictionary be used to store newly added words, or
should a VFP table be used?

We chose to use a global dictionary, because it
was going to be common for multiple users to rely
on the same list of custom word choices. Given
that choice, we also chose to use a VFP based
custom dictionary, because adding to a user's
Word dictionary is significantly more complicated
than stuffing a VFP dictionary. Add to that the
complexity of implementing and maintaining a
shared Word dictionary across the network, and it
was an easy choice to go with a VFP custom
dictionary.

The dictionary itself was pretty simply, just a
single column.

cWord c(50)

See Figure 11.

Figure 11. The DBF for the custom dictionary.

Implementing this wasn't too difficult.
First, we needed to add the row to the listbox

for each misspelled word. Adding this code
segment right after handling the suggested
corrections collection in the
CheckSpellingOfString() method did the trick:

* ER 6
* add one more row for 'Add word to
dictionary'
dimension This.aSuggestions[;
 This.iSuggestionCount+1, 3]
thisform.aSuggestions[;
 thisform.iSuggestionCount, 1] ;
 = liWord
thisform.aSuggestions[;
 thisform.iSuggestionCount, 2] ;
 = lcWord
thisform.aSuggestions[;
 thisform.iSuggestionCount, 3] ;
 = thisform.cMsgAddWordToDictionary

The other piece of the puzzle was to handle
the user's action when they double-clicked on the
"Add Word" line in the listbox. This simply
required a bit of reworking of the processing
logic.

Remember the following construct that
handled the double click depending on if the user
was clicking on a correction or on the 'Remove
Repeated Word' line?

if alltrim(this.aItems[this.ListIndex,2]) ;
 == thisform.cMsgDoubleClickToRemoveRepeat
else
endif

It now becomes the ELSE clause of a larger
construct that handles the Add Word line:

if alltrim(this.aItems[this.ListIndex,2]) ;
 == thisform.cMsgAddWordToDictionary
else
 if alltrim(this.aItems[this.ListIndex,2]) ;
 == thisform.cMsgDoubleClickToRemoveRepeat
 else
 endif
endif

Interestingly enough, the code that handles
emptying the listbox after the user double-clicks
doesn't have to be changed at all. The reason is
that the offered corrections and the 'Add Word'
prompt are all processed in the same way.

7. Use custom dictionary during spell
check.

Once the dictionary is in place, it was trivial to
incorporate its use. In the CheckSpellingOfString()
method, adding the following code segment
immediately after the

lcWord = getwordnum(lcStringToCheck, liWord)

line

* ER 7
* spell check using VFP custom ;
* dictionary first
select count(*) from SPELLCHECKCUSTOM ;
 where upper(alltrim(cWord)) ;
 = upper(alltrim(lcWord)) ;
 into array laHowManyMatches
if laHowManyMatches[1] > 0
 loop
endif

If the word was found in the custom VFP
dictionary, we just looped to the next word in the
string. So there you go.

8. Launch all actions from context
menu.

Finally, the last request the customer had was to
change the initial action executed when the user
right-clicked on a field. Instead of automatically
executing the spellcheck mechanism (and opening
the Spell Check Choices form), they wanted a
context menu that displayed multiple choices, as
shown in Figure 12.

Figure 12. Context menu offering multiple spell-check choices
upon right-clicking in a field.

I implemented this option for them by
modifying the RightClick() and LostFocus()
methods of the text and edit control base classes
to include a property that drove whether the
behavior would be to immediately run the
spellcheck form, or to run a popup first, and then
test the property and make the appropriate action.

* ER 8

do case
case this.cSpellCheckType = 'FORM'
 do form spellcheckchoices with ;
 thisform, this
case this.cSpellCheckType = 'POPUP'
 do spellcheckshortcut.mpr with ;
 thisform, this
endcase

This way, once the customer discovered that
they weren't going to implement the medical
dictionary after all, and wanted to revert back to
displaying the Spell Check Choices form
immediately upon right-clicking or tabbing
through the form, they would only have to make
changes to two properties.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Integrating Word's Spellcheck with Your VFP Application
	General Requirements
	The Engine
	The User Interface
	1. How is the spellcheck launched?
	2. What to check?
	3. What to check in a control?
	4. If user launched, what action is performed?
	5. How to display potential misspellings and suggested corrections?
	Summing up

	Implementation
	1. Grab a string to spellcheck
	2. Check to see if Word was already running, and instantiating Word if it wasn't
	3. Spellcheck each word in the string
	4. Store each misspelled word, together with Word's suggestions, to a data structure for presentation to the user
	5. Present choices to user

	User Interaction
	Enhancement Requests
	1. Remove all other suggestions from the list once one has been chosen.
	2. Provide a setting to ignore words that are in all caps.
	3. Check for repeated repeated words.
	4. Automatically execute spellcheck immediately upon field exit.
	5. Provide a settings dialog to configure how spellcheck works.
	6. Add word to dictionary.
	7. Use custom dictionary during spell check.
	8. Launch all actions from context menu.
	Author Profile

