
Integrating Visual FoxPro
and MailChimp – Part 3
Whil Hentzen

We've all written our own email applications. I
finally decided to use an outside service to handle
my emailing needs. Here's how I used VFP to
integrate with the mailing service.

Last issue's article promised to show you how to
download your mailing list, unsubscribe users
and get stats about your lists, all from Visual
FoxPro instead of having to go to the MailChimp
website and perform those tasks manually.

I then showed you how to connect to the Web
using West-Wind's client tools, how the
MailChimp API worked, how to construct the
URL needed to perform an export of a list, and
how to use VFP to automate that process.
Alas, we ran out of room before I could get to the
other tasks, so that's the topic of this article.

Types of Methods
Let's first look at the types of things you can do
with the MailChimp API. Their documentation
breaks out functions into 12 categories. I initially
found the list of categories a little daunting, as the
list seemed to be in haphazard order, and there
weren't any descriptions of the categories
themselves, just of the methods available in each
category. Let's take a quick look at the more
interesting ones, in the order that you'd use them.

Lists Related
These methods enabled you to manage lists,
including adding and removing subscribers,
exporting portions of a list, and managing the
attributes of a list that allow you to filter it into
sub-groups (or segments, as MailChimp calls
them.)

Campaigns Related
Once you've got a list, you're going to want to use
it, specifically by sending email and tracking the
results. These processes are called campaigns. The
campaign-related methods enable you to create,
send, and delete a campaign, and all the myriad
middle steps involved in doing so, such as testing
and scheduling.

Goal Related
Once you've sent a campaign, you may want to
automatically trigger followup actions, such as
sending a second email if they visit a specific page
on your website or make a request. MailChimp
calls these automatically triggered actions 'goals'.
These methods These methods enable you to
trigger goal event and retrieve goal event data.

VIP Related
You can tag certain list members as 'super duper
special', or, as MailChimp refers to them, VIPs.
These methods enable you to perform additional
actions for your VIP list members, such as
adding and deleting VIP status a a list member
and retrieving activity by your VIPs.

Conversations Related
When you send out a campaign, some of the list
members will reply to your email. You'll also
recieve auto-reply, on vacation, and bounceback
messages. It's hard to sift through the latter to find
the former. MailChimp will do the filtering,
calling the replies from live humans
'conversations'. These methods enable you to
retrieve conversation messages, metadata, and
reply to conversations.

Reports Related
Sending email is oh so much more useful if you
can garner information about the results. The
Reports methods enable you perform tasks such
as getting the addresses (1) that complained about
a campaign, (2) for which a campaign bounced,
(3) that opened an email, (4) that clicked on a URL
in an email, and (5) other stats, such as Google
Analytics, Twitter mentions, and so on.

Ecomm Related
MailChimp provides ecommerce plugins that
connect to third party ecommerce systems, and
there are plugins available that have been
developed by third parties. MailChimp's Ecomm
Related methods enable you to connect to those

systems via those plugins and import and manage
orders.

Templates Related
MailChimp also provides the ability to create
templates that can be to format emails sent over
multiple campaigns; the Templates Related
methods enable you to create, delete and
otherwise manage those templates.

Helper Related
This category is sort of a misnomer, I feel; it's got a
smorgasbord of good, interesting stuff. First, there
are methods that enable you to retrieve account
information, such as the type of MailChimp plan
you've got, payments made, Contact Info, high
level account stats, and the like.

Next, there are methods that enable you to
retrieve high level campaign and list data, and
utilities to convert HTML to text or inlined with
CSS. Finally, there's a simple 'ping' method that
enables you to verify that the MailChimp API is
up, similar to the
'DownForEveryone.com'

site that helps you determine availability.

Other Categories
Finally, there are a number of administrative
categories too, including Users Related (manage
the users who can access your MailChimp
account), and Folders and Gallery Related
(adding and deleting campaign folders and
gallery images and folders.)

Manage Subscribers
In my last article, I showed you how to get a
download ('export') a copy of your list from the
MailChimp site. I also promised to show you how
to manage subscribers. But first, let's look at a
meta-list method, list.

List All Lists
The 'list' list method (sort of like wait window
nowait) delivers a result set comprising of
metadata about the lists in your account. All you
need to pass to 'list' is your API key.

local lcDC, lcAPIkey, lcMethod, lcURL
lcDC = 'us1'
lcAPIKey = 'secret_apikey'
lcMethod = 'list'

lcURL ;
= "https://" ;
+ lcDC ;
+ ".api.mailchimp.com/2.0/lists/" ;
+ lcMethod ;
+ "?apikey=" ;
+ lcAPIkey + "-" + lcDC

Next, set up the West-Wind Client Tools.

do wwclient
do wwhttp
o=createobject('wwHTTP')

Initialize the variables to be passed and
returned. Remember, luResult is the entire result
set back passed back, not just a boolean or
numeric flag.

m.liText = 0
m.lcStringReceived = ''
m.luResult = -1
m.lcErrorMsg = ''

If you wanted to watch the fun while you
were testing, you could include some debugout
commands:

debugout 'BEFORE'
debugout 'lcErrorMsg:', lcErrorMsg
debugout 'luResult', luResult
debugout 'lcStringReceived:', lcStringReceived
debugout 'liText:', liText

Now make the call:

m.luResult=o.HTTPGet(lcURL, ;
 @m.lcStringReceived, @m.liText)

Grab an error string, just in case.

lcErrorMsg = o.cErrorMsg

And see what showed up afterwards.

debugout 'AFTER'
debugout 'lcErrorMsg:', lcErrorMsg
debugout 'luResult', luResult
debugout 'lcStringReceived:', lcStringReceived
debugout 'liText:', liText

If everything worked, luResult would look
something like this:

{"total":1,"data":
[{"id":"secret_list_id","web_id":1111111,"name
":"Test List","date_created":"2014-10-01
23:29:48","email_type_option":false,"use_aweso
mebar":true,"default_from_name":"Whil Hentzen
(Test)","default_from_email":"whil@whilhentzen
.com","default_subject":"","default_language":
"en","list_rating":0,"subscribe_url_short":"ht
tp:\/\/eepurl.com\/XXXXX","subscribe_url_long"
:"http:\/\/hentzenwerke.us3.list-
manage1.com\/subscribe?
u=secret_apikey&id=secret_list_id","beamer_add
ress":"us3-
bsecret_other_id@inbound.mailchimp.com","visib
ility":"pub","stats":
{"member_count":1,"unsubscribe_count":0,"clean
ed_count":0,"member_count_since_send":1,"unsub
scribe_count_since_send":0,"cleaned_count_sinc
e_send":0,"campaign_count":0,"grouping_count":
0,"group_count":0,"merge_var_count":2,"avg_sub
_rate":15,"avg_unsub_rate":0,"target_sub_rate"
:0,"open_rate":0,"click_rate":0,"date_last_cam
paign":null},"modules":[]}}

This extensive tuple, with many, many key
value pairs, starts with the total # of lists, and
then for each list, attributes including (but not
limited to) the following:

 List ID

 Web ID

 List Name

 Date Created

 Default From Name

 Default From Email

 Default Language

 Subscription URL (short)

 Subscription URL (full)

 Number of Subscribers

 Number of Unsubscribers

The List ID attribute is a very valuable entity,
because with it, you can then roll through all of
your lists without having to look the IDs up
manually.

Manage Subscribers
With a bit of practice in hand, now let's look at
managing subscribers.

Unsubscribe
The first scenario that you will likely run into will
be when a subscriber emails you and asks you to
remove them, instead of them doing it
themselves. You could go into your MailChimp
dashboard and do it that way, but how much
nicer to have a form in your VFP app for
subscriber maintenance. Simply find the email
address, hit 'Unsub' and let VFP (and West-Wind)
connect to the MailChimp site via the API, and
take care of it automatically. Here's

Subscribe
Once in a while, you may need to subscribe
someone manually. This typically isn't a good
idea, because the double-opt-in process described
in my first article is designed to ensure that the
subscriber really wanted to subscribe. Subscribing
an address via the API can be subverted (although
the MailChimp people do monitor, and will
suspend an account suspected of abuse.)
However, if you're adding addresses of your own,
for example, for testing or other purposes, this
may be perfectly reliable.

Update Subscriber Profile
A subscriber's profile contains several pieces of
information that might need to be updated. Just
like someone who wants to be unsubscribed but
finds it easier to email you instead of doing it
themselves, a subscriber may email you to have
them fix a typo in their name, change the
segments they've flagged, or change the type of
email format.

MailChimp Structs and Arrays
As I mentioned in my last article, the MailChimp
API is split into two pieces. The Export functions
have one syntax, the syntax we're going to use
from now on has a slightly different structure,
because the parms passed can be more involved,
including the potential for passing arrays. The
subscribe, unsubscribe and update methods look
roughly like this:

 lists/subscribe (string apikey,
string id, struct email, struct merge_vars,
string email_type, bool double_optin,
bool update_existing, bool
replace_interests, bool send_welcome)

 lists/unsubscribe (string apikey,
string id, struct email, boolean
delete_member, boolean send_goodbye,
Boolean send_notify)

 lists/update-member (string
apikey, string id, struct email, struct
merge_vars, string email_type, boolean
replace_interests)

You'll see a common parameter in all of these,
the 'struct email', which is not something we use
in Visual FoxPro. The 'struct' data structure is
essentially a key-value pair. The MailChimp
documentation provides examples using a variety
of languages, but not VFP, and it's not
immediately obvious just how to format such a
beast. The format for a 'struct' that passes an email
address is such:

+ "&email[email]=" + lcEmail

You can subscribe and unsubscribe multiple
addresses via sibling methods, batch-subscribe
and batch-unsubscribe. In order to do so, you
need to pass an array of email address, and that's
done like so:

+ "&batch[0][email][email]=" + lcEmail1 ;
+ "&batch[1][email][email]=" + lcEmail2

Obviously, you'd wrap this in a FOR NEXT
loop to process an array of email addresses and
concatenate the strings.

Building a Subscribe String
The rest of the call to the subscribe and
unsubscribe methods are similar to the List
method just described. First, initialize the
MailChimp API variables for your specific
account. This time, include the List ID and the
Email to be subscribed.

local lcDC,lcAPIkey,lcMethod,lcListID,lcURL
lcDC = 'us1'
lcAPIKey = 'secret_apikey'
lcMethod = 'subscribe'
lcListID = 'secret_listid'
lcEmail = 'email:muscle@softwaremuscle.com'

and build the URL to be passed to West-
Wind.

lcURL ;
= "https://" ;
+ lcDC ;
+ ".api.mailchimp.com/2.0/lists/" ;
+ lcMethod ;
+ "?apikey=" ;
+ lcAPIkey + "-" ;
+ lcDC ;
+ "&id=" ;
+ lcListID ;
+ "&email[email]=" ;
+ lcEmail
+ '"}]]'

You may want to build this expression, stuff
in values, convert it to a text string and paste the
entire string into a Web browse manually, just to
confirm that you've got everything just right.
Doing so would produce a Web page with a
confirmation message as shown in Figure 1.

Figure 1. A successful interactive response.

Once you've got the URL formatted and
working correctly, go through the same steps with
the West-Wind Client Tools setup, initialize the
vars to be passed and returned, and make the call.

m.luResult=o.HTTPGet(lcURL, ;
 @m.lcStringReceived, @m.liText)

In this scenario, if everything worked,
luResult would look something like this:

{"email":"muscle@softwaremuscle.com",
 "euid":"61gq0u7wf7","leid":"194560488"}

The euid string is the email unique ID in the
system, and the leid string is the unique ID for the

list member in the system. In other words, the
email address could be subscribed to multiple
lists.

If the call didn't work, however, you'd get an
error message that would contain information
about what happened. For example, suppose you
passed the string

The Quick Brown Fox Jumps

as the list ID parameter of the URL. Well, this
isn't a valid ID, so the MailChimp API would
respond with the following error:

{"status":"error","code":200,"name":"List_Does
NotExist","error":"Invalid MailChimp List ID:
The Quick Brown Fox Jumps"}

So that's the basic code. There is more to using
the Subscribe code than simply clicking 'Run',
though. Let's talk about how to use it.

Once you execute the code, a request with the
email address is sent to the MailChimp server,
and it's processed just as if someone manually
submitted the email address online, as described
in the first article in this series.

That means that MailChimp will send an
email to the email address being subscribed, as
shown in Figure 2.

Figure 2. Confirming an automated subscribe request.

This email will have to be responded to, just
as if the user had initiated the subscribe process
themselves. Once they do, the email address will
be added to the list. You can check the stats of
your list on the MailChimp site; it'll take a couple
of minutes for the subscription to 'hit', but you'll
soon see the number of subscribers has increased
by 1. See Figure 3.

Figure 3. An automated subscription request hits!

mailto:muscle@softwaremuscle.com

Building an Unsubscribe String
The basic unsubscribe process is nearly identical.
Simply pass 'unsubscribe' instead of 'subscribe' as
the value for lcMethod:

lcMethod = 'subscribe'

Now you see why I split the method name out
onto a separate line – the method name can be
parameterized and the rest of the code that builds
the URL string can be executed just once.

LcAction = 'sub'
lcAction = 'unsub'

do case
case lcAction = 'sub'
 lcMethod = 'subscribe'
case lcAction = 'unsub'
 lcMethod = 'unsubscribe'
otherwise
 * trap...
endcase

So the building of the URL looks like this:

lcURL ;
= "https://" ;
+ lcDC ;
+ ".api.mailchimp.com/2.0/lists/" ;
+ lcMethod ;
+ "?apikey=" ;
+ lcAPIkey + "-" + lcDC ;
+ "&id=" + lcListID ;
+ '&email=[{"cemail":"' ;
+ lcEmail ;
+ '"}]]'

As mentioned earlier, the list methods encompass
far more than just handling subscribers.

Building an Activity String
Aggregate list-related methods don't require an
email address. For example, the activity method
just needs an API key and a list ID, and will
return a tuple of various statistics. The URL
would be built like this, where lcMethod =
'activity':

lcURL ;
= "https://" ;
+ lcDC ;
+ ".api.mailchimp.com/2.0/lists/" ;
+ lcMethod ;
+ "?apikey=" ;
+ lcAPIkey + "-" + lcDC ;
+ "&id=" + lcListID ;

It returns a string like so:

[{"user_id":26390867,"day":"2014-10-
13","emails_sent":0,"unique_opens":0,"recipien
t_clicks":0,"hard_bounce":0,"soft_bounce":0,"a
buse_reports":0,"subs":1,"unsubs":0,"other_add
s":0,"other_removes":0}]

Building an Abuse Reports
String
Another useful report to pull for a list is the list of
email addresses that complained about a
campaign sent to that list. Again, the only
parameters that must be sent to the method are
the API key and the list ID. The URL is identical
to the previous statement, except that lcMethod =
'abuse-reports'. The return value looks like this:

 {"total":0,"data":[]}

(Hooray! No complaints!)

Building a List Growth Report
string
As we're all good at math, we also like numbers
and charts. And since we're also interested in
growing our lists, the Growth History report is a
lot of fun. Once more, the only parameters that
must be sent to the method are the API key and
the list ID. The URL is identical to the previous
statement, except that lcMethod = 'growth-
history'. The return value looks like this:

[{"month":"2014-
01","existing":"0","imports":"0","optins":"186
04"},{"month":"2014-
02","existing":"18604","imports":"0","optins":
"10299"},{"month":"2014-
03","existing":"28903","imports":"0","optins":
"5338"}]

Here's a snippet of code to parse your growth
history into a cursor:

if lcAction = 'grow'
 luResult = strtran(luResult, '[', '')
 luResult = strtran(luResult, ']', '')
 * how many months to parse?
 liHowManyMonths = occurs('month', luResult)
 create cursor csrGrowth (cCCYYMM c(7), ;
 iExisting i, iImports i, iOptins i)
 x = luResult
 for li = 1 to liHowManyMonths
 lcCCYYMM = substr(x, at('month',x,li)+8,7)
 liExisting ;
 = val(substr(x, at('existing',x,li)+11,;
 (at('imports',x,li)-3) ;
 - (at('existing',x,li)+11)))
 liImports ;
 = val(substr(x, at('imports',x,li)+10,;
 (at('optins',x,li)-3) ;
 - (at('imports',x,li)+10)))
 liOptins ;
 = val(substr(x, at('optins',x,li)+9,;
 (at('"}',x,li)) ;
 - (at('optins',x,li)+9)))
 insert into csrGrowth ;
 (cCCYYMM,iExisting,iImports,iOptins);
 values ;
 (lcCCYYMM,liExisting,liImports,liOptins)
 next
endif

See Figure 4 for an example of the cursor
created.

Figure 4. The Growth History cursor.

Building a Location String
Just as interesting to us numbers junkies is the
geographical distribution of a list. The 'location'
method returns a tuple much like the growth
history:
[{"country":"USA","cc":"US","percent":75.0,"to
tal":18000},
{"country":"Germany","cc":"DE","percent":12.0,
"total":2880},
{"country":"Australia","cc":"AU","percent":13.
0,"total":3120}]

So, a similar parsing method would give you
a cursor of countries and their relative counts:

if lcAction = 'loc'
 liHowManyCountries ;
 = occurs('country', luResult)
 create cursor csrLocation ;
 (cCountry c(20), cCC c(2), iNumSub i)
 y = luResult
 for li = 1 to liHowManyCountries
 lcCountry ;
 = substr(y, at('country', y, li)+10, ;
 (at('cc', y, li)-3) ;
 - (at('country', y, li)+10))
 lcCC ;
 = substr(y, at('cc', y, li)+5, ;
 (at('percent', y, li)-3) ;
 - (at('cc', y, li)+5))
 liNumSub ;
 = val(substr(y, at('total', y, li)+7, ;
 (at('}', y, li)) ;
 - (at('total', y, li)+7)))
 insert into csrLocation ;
 (cCountry, cCC, iNumSub) ;
 values ;
 (lcCountry, lcCC, liNumSub)
 next
endif

See Figure 5 for an example of the cursor
created.

Figure 5. The Location cursor.

So this gives you more in-depth coverage of
using the MailChimp API to perform tasks via
VFP instead of using their Web site. But wait,
there's more! You perhaps noticed that we didn't

cover how to update a list member's profile; doing
so involves using more complicated data
structures. In the next article, I'll show you how to
do so, as well as executing other even more
complex methods, using multiple structs and
parms of various formats, and how to handle
errors that may be thrown. Stay tuned!

Source Code Notes
The source code for this article is found in the
subscriber downloads. It consists of a single PRG
that contains a DO CASE structure for each of the
various methods discussed, and a variable that
causes the appropriate CASE clause to be fired.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

Whil,
So glad to hear that you are already
working on an article. My current
needs are simple. Just be able to
send a mail list from my VFP
management
system and auto trigger Mail Chimp to
send it. It would assume that the
customer has already created the
email form and the "mail merge"
fields for
that form.

My system totally manages auto body
shops so some of the fields would be
things like car make, model, repair
date, work that was done etc.

If I can do that then I'm sure my
customers would ask for more but I
believe
in starting simple and working up
from there.

I currently include SMS messaging in
the system. Since the provider I use
has a really solid and simple PHP API
I use VFP TEXT... ENDTEXT to create
the details and upload them via FTP
to my website then execute a PHP
script
on the site that does the actual
send/receive and returns the data
back to
VFP. All using a small app I wrote
based on West Wind wwipstuff. I was
thinking about doing the same thing
with Mail Chimp. Everything run
online
today can be run with PHP and VFP9's
TEXT ... ENDTEXT can create anything.

Many thanks,
John

John J. Henn, President
Jhenn Systems, Inc.
Baltimore: 410-609-0750
800-580-1627

	Integrating Visual FoxPro and MailChimp – Part 3
	Types of Methods
	Lists Related
	Campaigns Related
	Goal Related
	VIP Related
	Conversations Related
	Reports Related
	Ecomm Related
	Templates Related
	Helper Related

	Other Categories
	Manage Subscribers
	List All Lists

	Manage Subscribers
	Unsubscribe
	Subscribe
	Update Subscriber Profile

	MailChimp Structs and Arrays
	Building a Subscribe String
	Building an Unsubscribe String
	Building an Activity String
	Building an Abuse Reports String
	Building a List Growth Report string
	Building a Location String
	Source Code Notes
	Author Profile

