
Integrating Visual FoxPro
and MailChimp – Part 4

Whil Hentzen

We've all written our own email applications. I
finally decided to use an outside service to handle
my emailing needs. Here's how I used VFP to
integrate with the mailing service.

Welcome to the fourth article in our journey of
automating MailChimp from Visual FoxPro. In
this issue, I'm going to show you how to update a
list member's profile by using more complicated
data structures than what we've used so far. I'm
also going to cover other more complex methods,
using multiple structs and parms of various
formats. Finally, I'll discuss how to handle errors
that may be thrown.

We've learned that the basic URL formation
for a call to the MailChimp API looks like this:

lcURL ;
 = "https://" ;
 + lcDC ;
 + ".api.mailchimp.com/2.0/lists/" ;
 + lcMethod ;
 + "?apikey=" ;
 + lcAPIkey + "-" + lcDC ;
 + "&id=" + lcListID

where we can sub in a DC (data center), a
method, an api key (specific to your account) and
an id (specific to the list you're working with.)

We can add more, such as an email address,
with syntax like this:

&email[email]=al@example.com

The complete VFP code would look like this:

* pass one email address
if llIncludeEmail
 lcURL = lcURL ;
 '&email[email]=' ;
 + lcEmail
endif

With some methods, such as batch-subscribe,
you can pass multiple addresses in an array-like
structure. The syntax looks like this:

&batch[0][email][email]=al@example.com
&batch[1][email][email]=bob@example.com

Note that the batch index is zero-based. Given
an array, laEmail, of emil addresses, the VFP code
will look like this:

* multiple emails (batch-subscribe)
if llIncludeMultEmails
 for li = 1 to alen(laEmail,1)
 lcURL = lcURL ;
 + '&batch[' + allt(str(li-1)) + ']' ;
 + '[email][email]=' ;
 + laEmail[li]
 next
endif

Assembling the entire URL string and passing
it to the HTTPGet method as we've done in
previous articles:

m.luResult=o.HTTPGet(lcURL, ;
 @m.lcStringReceived, @m.liText)

the luResult string looks like this:

{"add_count":3,"adds":
[{"email":"al@example.com","euid":
"100045b890","leid":"123456941"},
{"email":"bob@example.com","euid":
"fb323342296","leid":"196662323"},
{"email":"carla@example.com","euid":
"c234ldfs8s","leid":"194454we3"}],
"update_count":0,"updates":[],
"error_count":0,"errors":[]}

Remember, just like manual subscriptions,
this method only causes emails to be sent to the
addresses. Those people have to opt in to
subscribe to the list. You won't see the addresses
added to the list until they've answered the email
and agreed to subscribe.

Updating Subscriber Data
Now let's get to the update member method. First,
you need to know what fields you're updating.
Typically, your reason for doing the update from
VFP is that the subcriber contacted you instead of
doing the update themselves. So the info to be
updated is per their request, and thus is going to
data from the signup form they originally filled
out, shown again in Figure 1.

mailto:%3Dal@example.com

Figure 1. The original signup form.

What might a list subscriber want to have
updated? Pretty much anything they filled out on
the form. The format for updating a field named
'FNAME' generally looks like this:

lcEmail = 'al@example.com'
lcFnameNew = 'Aloyious'
lcURL = lcURL ;
 + '&email[email]=' ;
 + lcEmail + ;
 + '&merge_vars[FNAME]=' ;
 + lcFnameNew

Finding Field Name Vars
The $64,000 question that arises, of course, is
"How do you find out what the 'merge vars' tag is
for any other field?" The answer is "You created
the name of the field when you created the sign-
up form." Let's revisit. On the MailChimp site,
open your list of lists (the double pieces of paper
icon), then click on the name of the list of interest.
You'll get the main page for the list, including the
"Stats, Manage subscribers, Add subscribers,
Signup forms, Settings" menu. Click on the
"Signup forms" option and then the 'General
forms' icon, and you'll see your signup form.

Click on a field in the form, and you'll see
attributes of that form, including, in the middle,
the 'field tag', which is the expression you're
looking for. See Figure 2.

Figure 2. Editing the signup form to determine variable names.

Individual Field Name Vars
However, I said *generally*. Not every field
works the same. Let's look at the variations.

First, there's the email address. Every signup
form has an email address, obviously, and it's
always called 'EMAIL'. Technically, while you can
change this field via the 'merge_vars' clause, it's a
very, very bad idea, because you would, in effect,
be subscribing someone else and bypassing the
double opt-in mechanism. Abuse of this
mechanism is a quick way to get your MailChimp
account shut down.

Next, if you've checked the "Let subscribers
pick email format" checkbox to the right of the
type of form (see Figure 2, near the top), a
"Preferred format" option group will
automatically be added to your signup form.
Since it's done automatically, you don't have any
control over the field. It's name is "EMAIL_TYPE"
and you can't change it.

The third type of field are free-form data
entry controls like text, numbers and dates. There
are a number of pre-defined data entry controls
that restrict the format of what's being entered:

 date can be defined as mm/dd/ccyy or
dd/mm/ccyy. There is a calendar
icon on the right side of the textbox
that opens a date picker.

 birthday can be defined as
mm/dd or dd/mm, where mm is
between 0 and 12 and day is between 1
and 31.

 zip code requires five digits.

 phone can be defined as
international (free-form) or US/Canada
(nnn-nnn-nnnn).

 website and image both require a
protocol and a properly formatted URL.
The image is a little awkward in that you

have to type in the URL, there isn't a
mechanism to navigate to it.

All of these have a field tag that you can name
during creation of the form, and thus they can all
be updated using the same format as the FNAME
code snippet, as long as the data being passed is
valid.

The fourth type of field are multiple choice
with a single allowed value - option buttons and
drop downs - and you name the field, just as with
free-form data entry controls. During form
creation, you name the field, and the syntax is the
same as the free-form data entry form. The only
restriction is that the value passed must be a value
you defined as an option button label or one of
the items in the drop down.

The fifth type of field are checkboxes. These
are a little tricky, because there is no place to
define a field tag. Instead, the name of the
collection of checkboxes is used as the field tag. In
Figure 3, the name of the group of checkboxes is
"Development Interests", and that's the field tag
used.

Figure 3. Determining the field tag for complex fields.

This structure is more involved; you pass an
array of values, similar to when you pass multiple
email addresses to a batch-subscribe.

Finally, the granddaddy of them all, the
address field. The field has a field tag, like other
free-form data entry controls, that you can define.
However, the address field has multiple
components, as shown also in Figure 3.

You can pass a string of field values, each
delimited by two spaces, to update the address.
Note that every field has to be passed.

If the user doesn't enter a valid value, the field
will be highlighted in red and the user will be
informed how to correct. If an invalid value is
entered during automatic update, however, the
update is simply ignored. In some situations, the
original value may be deleted. More on that later.

So that's where you find the name in the
'merge_vars[<field name>] construct. Enough of
the theory, let's look at specific examples.

Field Name Syntax Examples
We've already seen the syntax for the FNAME
field. Typically, though, we'll be updating both
the first and last name at the same time.

lcNaFirst = 'Freddie'
lcNaLast = 'Mac'
lcURL = lcURL ;
+ '&merge_vars[FNAME]=' + lcNaFirst ;
+ '&merge_vars[LNAME]=' + lcNaLast

The number and zip code fields are similar.
The only difference is that if the validation fails,
the update will be ignored.

lnCustomerNumber = 123456
lcURL = lcURL ;
 + '&merge_vars[INOCUST]=' ;
 + allt(str(lnCustomerNumber))
lcZip = '53201'
lcURL = lcURL ;
 + '&merge_vars[ZIPCODE]=' + lcZip

The MailChimp backend is expecting a date
formatted as a string.

ldDate = {10/31/2014}
lcURL = lcURL ;
+ '&merge_vars[DACTIVE]=' + dtoc(ldDate)

A date of birth is just the month and date
parts of the date, padded out to two characters.

ldDOB = {1/1/1980}
lcMMDD = ;
 padl(alltrim(str(month(lddob))),2,'0') ;
 + '/' ;
 + padl(alltrim(str(day(lddob))),2,'0')
lcURL = lcURL ;
 + '&merge_vars[DOB]=' + lcMMDD

A phone number can either be a free-form
string (for international numbers) or a strictly
formatted area code, exchange and line
combination. If the string passed in doesn't pass
the MailChimp validation, it'll be ignored.

lcPhone = '414-555-1212'
lcURL = lcURL ;
+ '&merge_vars[PHONE]=' + lcPhone

The website and image strings need to be
fully formed URLs. If they're not, the MailChimp
back end will ignore them.

lcWebsite = 'http://www.example.com'
lcURL = lcURL ;
 + '&merge_vars[WEBSITE]=' + lcWebsite

A drop down field takes a string just like the
free-form fields. If the string passed to the
MailChimp back end isn't one of the choices

defined in the drop down, the update will be
ignored.

lcDevHQ = 'Texas'
lcURL = lcURL ;
 + '&merge_vars[DEVHQ]=' + lcDevHQ

An option group field works just like the drop
down. If the string passed to the MailChimp back
end isn't one of the choices defined in the option
group, the update will be ignored.

lcPrimarySoftwareInterest = 'Python'
lcURL = lcURL ;
 + '&merge_vars[PRISOFTINT]=' ;
 + lcPrimarySoftwareInterest

The checkbox field works like a combination
of a group of email addresses as well as an option
group or drop down, in that multiple values can
be passed as an array, but the values are pre-
defined.

Suppose you wanted to update the
Development Interests field for the subscriber,
specifically, to flag two of the three possible
choices, Conversions and Upgrades. The format
would look like so:

lcURL = lcURL ;
 + '&merge_vars[GROUPINGS][0][name]=';
 + 'Development Interests' ;
 + '&merge_vars[GROUPINGS][0][groups][0]=' ;
 + 'Conversions' ;
 + '&merge_vars[GROUPINGS][0][name]=' ;
 + 'Development Interests' ;
 + '&merge_vars[GROUPINGS][0][groups][1]=' ;
 + 'Upgrades'

If an invalid name for the checkbox group or
an individual checkbox label is passed, the update
will be ignored.

The addesss field consists of a string of each
field, address line 1, address line 2, city, state, zip
and two digit country code, concatenated and
separated by two spaces.

lcURL = lcURL ;
 + '&merge_vars[FULLADDR]=';
 + '123 Main Ste 4 MyCity TX 70601 US'

Using four spaces between address line 1 and
city (when an update doesn't have a second
address line) will validate correctly.

lcURL = lcURL ;
 + '&merge_vars[FULLADDR]=' ;
 + '4000 Elm Ave NoCity WI 54321 US'

Omitting any of the fields or not delimiting all
fields by two spaces will result in the entire
update being ignored.

The address field collection has a second
construct that you may find to be easier to use.

lcURL = lcURL ;

+ '&merge_vars[FULLADDR][addr1]=Corner of ' ;
+ '&merge_vars[FULLADDR][addr2]=NoAndWhere' ;
+ '&merge_vars[FULLADDR][city]=Nowhere' ;
+ '&merge_vars[FULLADDR][state]=AK' ;
+ '&merge_vars[FULLADDR][zip]=53201' ;
+ '&merge_vars[FULLADDR][country]=US'

There are a pair of tricks to using this
construct successfully.The names of the fields,
such as 'addr1', have to be submitted in lower
case, and all fields have to be included in the
construct, even if they're blank.

Error Handling
So what happens if errors occur? Let's first talk
about the types of errors that you may run into,
and then how to deal with them.

Types of Generated Errors
You will typically run into three types of errors.

The first is when the MailChimp server
doesn't respond. These are easy to spot and
(generally) easy to deal with.

The second is when a badly formatted string
is sent to the server and an invalid request is sent
to the server. This generates an error code and a
return value that can be parsed and dealt with.

The third is when bad data is sent to the
server. This also generates an error code and a
return value that can be parsed and dealt with.

There is a fourth scenario that can occur, and
it's difficult to deal with. In some situations,
invalid data sent to the server is ignored, and
doesn't generate either an error code or a return
value. These are tough to deal with. Let's look at
examples of each.

Server Connection Problems
Suppose you send bad parameters in the string
that identifies the server. As discussed earlier, this
string looks like this

lcDC = 'us3'
lcMethod = 'subscribe'
lcAPIkey = 'very secret'
lcListID = 'also_very_secret'
lcURL ;
 = "https://" ;
 + lcDC ;
 + ".api.mailchimp.com/2.0/lists/" ;
 + lcMethod ;
 + "?apikey=" ;
 + lcAPIkey + "-" + lcDC ;
 + "&id=" + lcListID

Suppose that an invalid data center value was
assigned, like so:

lcDC = 'BadDC'

Since this string is part of the domain name,
the server itself can't be identified, and a

connection can't be made. Web Connection's
o.HTTPGet method doesn't make a connection,
and the o.error property is assigned the value

A connection with the server could not be
established

This will take a bit of manual fiddling but
once you get the string fixed, you shouldn't have
any troubles.

A variation of bad parameters passed would
be when a bad folder name is passed. Instead of

+ ".api.mailchimp.com/2.0/lists/"

suppose a typo passed this:

+ ".api.mailchimp.com/1.0/lists/"

which isn't valid. The connection with the
server is successful, and the MailChimp error
handling mechanism populates the o.error
property of

Not Found

and passes a return value of

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML
2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body>
<h1>Not Found</h1>
<p>The requested URL /1.0/lists/update-member
was not found on this server.</p>
</body></html>

Internal Server Errors
There are a whole suite of situations that can
generate an "Internal Server Error" error.
Fortunately, the luResult return value is chock full
of details about what went wrong.

Suppose you sent a bad lcListID value. The
return value would look like this:

{"status":"error","code":200,"name":"List_Does
NotExist","error":"Invalid MailChimp List ID:
24dXXMyBadListID9fa90e8"}

Another example would be forgetting to send
an email address to a call that needs one, such as
unsubscribe. The result is

{"status":"error","code":-
100,"name":"ValidationError","error":"You must
specify a email value"}

A third example would be sending a non-
existent address to a call that needs one, such as
update-member:

{"status":"error","code":232,"name":"Email_Not
Exists","error":"There is no record of the
email address \"herman@softwaremuscle.com\" in
your account"}

Errors Resulting from Bad Data
There are other errors that generate an Internal
Server Error, but are caused by passing invalid
data strings. For example, strings that have been
assigned in the signup form, such as the labels in
option groups and checkboxes, need to be
matched exactly. If not, an error is passed.
Suppose the name of a group of checkboxes is
"Development Interests" but the string passed is
missing the space between the two words.

Instead of this:

+ '&merge_vars[GROUPINGS][0]
[name]=DevelopmentInterests' ;
+ '&merge_vars[GROUPINGS][0][groups]
[0]=Conversions' ;

this is passed

+ '&merge_vars[GROUPINGS][0][name]=Development
Interests' ;
+ '&merge_vars[GROUPINGS][0][groups]
[0]=Conversions' ;

The return value looks like this:

{"status":"error","code":270,"name":"List_Inva
lidInterestGroup","error":"\"DevelopmentIntere
sts\" is not a valid Interest Grouping name
for the list: Test List"}

Similarly, if "Upgrading" is errantly passed:

+ '&merge_vars[GROUPINGS][0][name]=Development
Interests' ;
+ '&merge_vars[GROUPINGS][0][groups]
[0]=Upgrading'

instead of the correct value of "Upgrades":

+ '&merge_vars[GROUPINGS][0][name]=Development
Interests' ;
+ '&merge_vars[GROUPINGS][0][groups]
[0]=Upgrades'

the luResult returned is

{"status":"error","code":270,"name":"List_Inva
lidInterestGroup","error":"\"Upgrading\" is
not a valid Interest Group in
Grouping \"Development Interests\" on the
list: Test List"}

These are all easily resolved, as the return
value identifies the value in question. There are
issues that are more complicated. For example,
supposed a badly formatted email address is
passed, like so:

&email=[{"cemail":"muscle@softwaremuscle.com"}
]

instead of the correct string

&email[email]=muscle@softwaremuscle.com

and the value returned is:

mailto:%3Dmuscle@softwaremuscle.com

{"status":"error","code":-
100,"name":"ValidationError","error":"Validati
on error: {\"merge_vars\":\"Please enter a
struct\\\/associative array\"}"}

Bad Data Mishandled
There are some types of bad data that are passed
that ignored by the MailChimp server. For
example, if a bad field tag for a text box is
included in a string passed to the server, the
request is simply ignored. Here, the field tag
"FIRSTNAME" was errantly passed instead of the
correct "FNAME" tag:

lcURL = lcURL ;
+ '&merge_vars[FNAME]=Bernie&[LNAME]=Macoid'

instead of

lcURL = lcURL +
'&merge_vars[FNAME]=Bernie&merge_vars[LNAME]=M
acoid'

This request silently fails. It does not, but
doesn't return an error either.

In other situations, the request does have an
effect, but not the one you'd like.

For example, an address string must have
each field separated by two spaces. If a single
space is used between two fields, or a field is left
out, the request causes the field contents to be
deleted, but no error is generated.

These are both invalid strings

* only one space between state, zip and
country
123 MailChimp St Suite 1 Milwaukee WI 53201
US
* missing country code
123 MailChimp St Suite 1 Milwaukee WI
53201

and they both cause the existing data to be
deleted.

On the other hand, passing certain kinds of
invalid data, such as a bad state abbreviation, is
ignored. This address string

* WX is not a valid state abbreviation
123 MailChimp St Suite 1 Milwaukee WX
53201 US

is allowed and is stored to the list.

Dealing With Errors
As you can see, it's best to examine the o.Error
property for a value, and if it's populated, look at
luResult value for specific messages. This isn't a
cure-all, but it'll take care of the more heinous
problems.

A structure like this first looks for an error
message:

lcErrorMsg = o.cErrorMsg
if !empty(lcErrorMsg)
 do case
 case upper(allt(lcErrorMsg)) ;
 = upper('A connection with the server ' ;
 + ' could not be established')
 * domain name has a problem
 case upper(allt(lcErrorMsg)) ;
 = upper('Not Found')
 * error in the folder structure following
 * the name of the domain
 case upper(allt(lcErrorMsg)) ;
 = upper('Internal Server Errors')
 * errors in the values sent to the server
 do case
 case upper('Invalid MailChimp List ID') ;
 $ luReturn
 case upper('You must specify a email' ;
 + ' value') $ luReturn
 case upper('There is no record of the ' ;
 + ' email address') $ luReturn
 case upper('is not a valid Interest ' + ;
 'Grouping name for the list') $ luReturn
 case upper('is not a valid Interest ' + ;
 ' Group in Grouping') $ luReturn ;
 and ;
 upper('on the list') $ luReturn
 case upper('Validation error: {\') ;
 $ luReturn ;
 and ;
 upper(':\"Please enter a struct' + ;
 ' \\\/associative array\') $ luReturn
 endcase
 otherwise
 *
 endcase
 return
endif

and then does an additional search for specific
strings in the luResult string if the error message
was 'Internal Server Error'.

What you choose to make happen when these
errors are encountered, of course, is up to you.

Source Code Notes
The source code for this article is found in the
subscriber downloads. It again consists of a single
PRG that contains a DO CASE construct for each
of the various methods discussed, and a variable
that causes the appropriate CASE clause to be
fired.

It then provides a second CASE construct to
handles the return value.

To try it out, change the variables at the top of
the PRG, controlling the server parms and which
action you want to perform.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Integrating Visual FoxPro and MailChimp – Part 4
	Updating Subscriber Data
	Finding Field Name Vars
	Individual Field Name Vars
	Field Name Syntax Examples

	Error Handling
	Types of Generated Errors
	Server Connection Problems
	Internal Server Errors
	Errors Resulting from Bad Data
	Bad Data Mishandled
	Dealing With Errors

	Author Profile

