
How Big Is That System?
Whil Hentzen

Most Fox developers these days are running into
situation of being asked to take over another
system. One of the first things you'll need to do is
evaluate that system. This article describes a tool
that gathers a variety of statistics about a system
and then discusses what to do with that
information.

One of the first questions you should ask is 'How
big is the system'? Understanding the size of the
system is the first step in appreciating the
complexity. Unfortunately, most system owners
have no idea, and I mean *literally, NO IDEA*.
After all, the system was developed over years, in
more than a few cases, decades. And often by
more than one developer. It's a sure bet that no
metrics on the development have been kept, so
the number of hours put into the system is worse
than a mere guess. However, you can get a rough
size and general scope of the system by
determining how many files and lines of code are
in it, as well as a few metrics on what's in the
code. These metrics may give you an insight on
the difficulty in working with the code.

What comprises the system?
The first issue to consider in this endeavor is
defining what comprises "the system". At first
glance, one might assume that simply scanning
through all of the files in a VFP PJX would be
sufficient, but au contraire.

* There might be files in the system folder that
aren't included in the project, such as files named
by macro expansion, indirect references and in
meta-data and dictionary tables.

* Or it might be known ahead of time that the
system's files aren't contained solely in a project,
but are found in the folder that contains the
project.

* Or there may be system-related files
scattered throughout a folder and subfolders.

* Finally, there may be multiple projects
involved in the system, so examination of an
entire folder might be in order.

Additionally, once the issue of scope has been
determined, there may still be files that are part of
the system that aren't caught by this tool. .APP

and .EXE files, for example, need to be located
and analyzed separately.

There isn't much that's all that interesting
about identifying the scope past determining
what it is, so for the time being, let's bypass that
step and just assume we're going to look at a
project.

Once the scope of the system has been
defined, the goal is to gain an understanding of
the size of the system, and 'close enough' will be
sufficient. Precision is not important, so the
calculations don't have to be exact. More
important are the types of information gathered.

For example, whether there are 71,502 or
75,102 lines of code in the PRGs that make up a
system isn't important. Whether those 70K lines of
code are in 10 PRGs or 1100 PRGs is much more
interesting and telling of what you might find
when you get into the system.

Similarly, whether there are 71,502 or 75,102
lines of code in a class library is unimportant.
Whether there are 3 class libraries that support
150 forms, or 25 class libraries and 3 forms is
much more important, because those two cases
describe two completely different approaches
toward the application architecture.

Using the How Big Tool
Included in this issue's Downloads is a
HowBig.scx form (and supporting base classes.)
Running the form displays the empty form shown
in Figure 1.

Figure 1. The HowBig system size and scope tool.

To use it, click the Project option button, click
the Point to command button to select a PJX file,

and then click the Calculate Size button to
generate two sets of statistics on the project.

The first set of stats is a summary, grouped by
file type, shown in Figure 2.

Figure 2. Summary of system file counts.

The second set is a list of files in the project,
together with counts of specific attributes for each
file, shown in Figure 3.

Figure 3. List of project files and file attributes.

Both the Summary and Files lists include
grand total rows at the bottom.

This article won't go into the code
underneath; it's simple and straightforward, with
enough comments to obviate the need for lots of
head-scratching. However, it's worth explaining
the reasoning for the types of data that is
collection.

Types of Data Collected
First of all, we want to know how many 'things'
are in the system. On the macro level, 'things' are
simply types of files - tables, forms, reports, and
so on.

Summary tab
These are broken down and their counts listed in
the Summary tab. Beyond the sheer number of
files, though, we want to know how complex each
object is, so I counted the number of objects in
each type of file, as appropriate.

For example, for forms and reports, I drilled
through how many controls were on the form or

report, and how many lines of code were in its
methods.

At first blush, a form with 30 or 40 controls
would have seemed to be more complex than a
form with one or two controls, but that's not
necessarily so. A form with 2 controls but
thousands of lines of code in its methods is likely
going to be more complex than a form with 40
controls but only 100 lines of code.

Obviously, this doesn't take into account
inheritance – a form could inherit from a complex
class but appear to be simple, since it had only a
couple of its own objects. Still, if the instance itself
doesn't have a lot of extra objects or lines of code,
it'll likely be simpler than if it had a lot of 'things'
in it.

The summary page provides the totals for
each type of file, so that at a glance, you can see
how many files and how 'busy' those files, on
average, are going to be.

Files tab
Once done with the summary, we're going to
want to be able to drill down more granularly. For
example, suppose there are 10 forms with a total
of 200 objects and 4000 lines of code. That's 20
objects and 400 lines of code per form. That
sounds like a reasonable level of complexity for a
form. However, suppose your customer has told
you that there are two particular forms that they
need work on. Use the Files tab to look at the
counts for those two forms. If they both feature
over 60 objects and a thousand lines of code each,
you know that these two are way more complex
than the rest of the system.

The Files tab lists counts nine attributes for
each file. These attributes can be segmented in
three groups.

The first three attributes, Lines of Code, Lines
of White Space, and Number of Comments, all
have to do with how dense the code is and how
hard it might be to understand. While not a cure
all, code with white space is generally going to be
easier to read than code that's jammed all
together, and code with comments may give you
a better chance than uncommented. Indeed, I once
ran into a system where each PRG had no
comments or whitespace, and, even worse, didn't
even have indentation, because the programmer
didn't want to waste the characters needed to tab
or space logic structures. REALLY easy to work
with.

The next three, Number of Objects, Number
of Functions/Procedures/Methods, and Number
of Properties, give you an idea of how many
'things' there are to deal with. A PRG with
hundreds of functions or procedures is likely a

library file, but if it's not, it could be trouble. As
far as properties, absence or minimal use of these,
particularly in conjunction with a large number of
methods in a form or class, or a large number of
publicly declared variables, could spell trouble.

The last group, the Number of Variables
explicitly declared as Public, Private or Local,
particularly in conjunction with the number of
lines of code, tells you about the discipline of the
developers of the program. If there are a large
number of lines of code but few or no explicit
declarations, there could, again, be trouble.

What To Do With The Data
While it may seem from the discussion so far that
the purpose of this data gathering is strictly
personal, that is, so that you can get your arms
around the system, there's a second purpose as
well – to show and educate your customer about
what will be required with their system. All too
often, the owner of the system has forgotten the
amount of knowledge hidden in its bowels, and
thus assumes trivial amounts of effort will be
needed to perform what they perceive as simple
tasks.

There aren't any absolute or generally
accepted principles when it comes to values of
any of these counts. You can't take a form and
absolutely declare, "Oh, this form has 20 controls
on it but only one property, therefore (some
conclusion)." What you can do is appreciate how
much 'stuff' you'll have to wade through when
working with an entity. That report that has 75
controls and hundreds and hundreds of lines of
code, and not a single comment anywhere, is
likely going to be challenging.

What do you do with these numbers? First,
you should run this tool against all of your past
projects, to get an idea of the values, both average
as well as the min and max extremes, of projects
you're familiar with. If a new application varies
greatly from those values, you will know better
what you're getting into.

Second, at some point, your customer is going
to ask you for an evaluation of their system. If you
have to shrug your shoulders and agree that you
have no idea what you're getting into either,
they're going to wonder if they want to hire you
on. However, if you can quickly tell them things
about their system that they don't even know,
you'll appear more authoritative and professional.
And if you can then follow up with, "In my
experience..." and compare and contrast with
other systems you've analyzed, you'll be in a
much stronger position to provide and sell your
recommendations.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	How Big Is That System?
	What comprises the system?
	Using the How Big Tool
	Types of Data Collected
	Summary tab
	Files tab

	What To Do With The Data
	Author Profile

