
Lessons From A VFP
Conversion Gone Bad

Whil Hentzen

There's plenty of work out there doing FoxPro 2.x
to Visual FoxPro conversions (even FoxBase and
FoxPro 1.0 to VFP), and that capability will
continue to be in demand for another five years or
more as companies try to leverage their
investment in decades of existing code and data
through 2020 and beyond.

I've been involved in a number of conversions,
ranging from 500 to 3000 hours over the last few
years, and have seen my share of successes - as
well as a disaster or two. I'd like to share some my
experiences.

Today, I'll take a different approach from most
articles, which are often technical how-to
descriptions. Everyone loves a good story, and
everyone loves watching a train wreck (as long as
they are out of danger themselves.) Thus, I'll tell a
number of stories, each a miniature disaster,
either from my own experience or from a peer.
Finally, much like Aesop's fables, each story will
conclude with a lesson.

There's the story of the operations research
team doing studies on various military sorties
during World War Two. One such study involved
an analysis of Allied bombers returning from
bombing missions over Europe. Each plane that
returned was examined carefully for bullet holes
and shrapnel damage. Maps of the location of all
damage were constructed and overlaid, so as to
identify where to fortify the planes with
additional armor plating.

At the last minute, a second team of analysts
was brought in to confirm the recommendations,
and they surprisingly turned the
recommendations on their head, suggesting that
the planes that returned with holes were
obviously capable of surviving damage to those
areas, and no reinforcement was needed. They
then explained that the studies had made a huge
sampling error - the planes that needed to be
modified were the ones that did not return!

However, it wasn't necessary to examine
those planes (which was convenient, since the
enemy wasn't likely to be cooperative in returning
any planes that were still able to be examined.)
Rather, it was obvious that the vulnerable
locations on the non-returning planes were those
places not damaged on the returning bombers.

Similarly, examining conversions that went
well offers the same sampling error - to make
your conversion a success, study the conversions
that didn't go well, so that those vulnerabilities
can be avoided.

Preliminaries
Before getting started with Fox stories, let's
discuss the environment in which we're living.

Chicken Or Egg?
Start with Code or Data?

Applications consist of data and code. What do
you start with first? We're going to start with data,
because the code lives to serve the data, not vice
versa. Code may change. Data stays around
forever.

So I'll start with stories that have to do with
data.

Things Are The Way They Are...
...because they got that way. I first heard this at
my first DevCon back in 1992, but later learned
that the source was Jerry Weinberg years earlier,
in his classic 1985 tome, “Secrets of Consulting”.

Converting an old application can be
incredibly frustrating. It'd be shocking if you
didn't shake your head thinking, “Why did they
do THAT? What were they thinking?” This is
counterproductive. So it's best to fix your mindset
before doing anything else.

People don't wake up one morning and say to
themselves, “Hey, I'm going to write a bunch of
horrible code today!” They do the best they can
with what they've got. But what they've got is

almost always imperfect, and so they usually end
up with imperfect results. That imperfection may
not be evident on day one, but eventually it will
be.

Remind yourself, “They did the best they
could with the knowledge and tools they had at
the time.”

The more things change, the more they
change

An app from 20 years ago used different best
practices than we use today. Zipping up your
source code folder structure with today's date and
copying it to external media was state of the art
version control backup in 1995. If they automated
that and it's been working fine ever since, serving
their needs, well, there's a lot to be said for the 'If
it's not broke” philosophy

It's tempting to go all evangelistic on them,
“WHY AREN'T YOU USING GITHUB?”,
slamming the door and mouthing off to everyone
in earshot like you're the only smart person in the
office. Before you roll your eyes or bark at them,
walk a mile in their shoes.

I ran into an app a couple of years ago that
was virtually unreadable. Copyright dates that
went back to the 80s, it hurt my head to go
through it. Opening up any PRG and this is what I
immediately saw:

 No blank lines to separate code segments.
 No indenting of logic structures.
 No comments.
 No spaces to separate components of
expressions to help readability.
 Four letter abbreviations for every
command and function.
 Variable name lengths minimized – most
were one or two letters long, all were a
maximum of five or six letters long.

You're shaking your head at this, just like I
did, aren't you? It turns out, however, this was
not the ravings of a lunatic. Rather, there were
specific reasons for every one of these attributes.

The first and most important reason for all of
this was that back when this application was first
developed (remember the copyright dates), PRG
files had a limitation of 64K, and the editor had
the unfortunate behavior of just truncating a file
that grew larger. A number of his PRGs were so
complex (at the time) that he simply couldn't
spare the extra characters that blank lines, spaces,
complete command and function names, and the
like required.

Second, back in those days, remember what
the monitors looked like? 80X25 green screens, or
maybe color. We were used to printing out our

source code listings and poring over them, and it
was easier to get a birds eye view of 6 or 8 pages,
with few or no blank lines, rather than 16 or 18
pages that were replete with blank lines, indents,
and so on.

As, yes, now you remember. We saw that
style a lot 30 years ago, didn't we? But now you're
arguing, things have changed. Who would keep
code like that around now?

What did I just say? The developer had been
living with that code for 30 years. He knew it
backwards and forwards. He could open a PRG
file, spin to the third page, and find an expression
embedded in the middle of a line a halfway down
the page in an instant. What would the benefit be
to him to modify hundreds of pages of listings
that he knew intimately? None whatsoever.

Sure, these days we have a multitude of
solutions, but at the time, given the tools,
requirements, and environment he had to work
in, his approach was the optimal solution, and it's
not broke. No need to 'fix' it.

Sophistication Is as Sophistication Does
Let's face it, there were a LOT of dBASE and Fox
programmers (hate to use the word 'developer') in
the last 80s and early 90s who got into the
business primarily because they liked to tinker.
They weren't really very good at what they did,
they didn't have the appropriate training or
background or mindset, and they weren't
necessarily working to ameliorate that situation.
They were just more inclined to poke at things
than most others, and thus got the reputation as
the local “PC guru”.

I remember sitting in a meeting with one such
local guru who tossed around a cookie jar full of
buzzwords, impressing everyone else in the
meeting, such how an 'IDX file' worked to speed
up his programs, and that he “didn't use those
'CDX files' because, you see, putting all the
indexes in one file, where every operation had to
wait to access the same file, actually slowed things
down.”

Accordingly, hacks 20 or 30 years ago got
away with practices that wouldn't be accepted
today. Their longtime customers also have their
head in the sand, worrying about their own
business, no longer aware that their developer is
stuck in the past.

Sometimes Good Enough is Good Enough
Back in the 80s when every company seemed to
be on the 'Quality' bandwagon, everyone was
trying to define just what 'Quality' was. I heard a
definition that, to this day, was the most succinct
definition, yet was head and shoulders above

anything else I'd heard to that point, and have so
far not heard a better one.

Quality is 'fitness' for use'.
In other words, quality isn't an attribute that

stands alone, that belongs to an object or process,
independent of what its surroundings. It only is
relevant in respect to the bigger picture. You can
look at a car and unequivocally state that it's blue
or white or polka-dotted. You can't look at a flat
head screw that's machined to 5/10,000s of spec
and ascertain whether it's of good quality or not.
You need to know what it's being used for.

That flat-head screw's quality level is overkill
if you're using it to attach gutters to your garage,
but it's not nearly good enough if you're using it
in the compressor of a jet engine.

Similarly, you don't always need the most
beautiful code or the most optimized algorithms –
as long as the code helps the business make
money, it's really good enough. And after a point,
it's not about the system, it's about the people. If
the developer – regardless of how much a hack
they are – has kept their customer happy for two
decades, that puts them way ahead of a large
group of dilettantes whose own ego puts their
personal desires ahead of the needs of their
customers.

But sometimes they stayed that way
All this said, it's not uncommon to run across an
app that was state of the art in 1995, developed
with the period's best practices, and is even now
working well. Except that the developers
remained mired in 1995. They got good at where
they were, but never moved on.

And frankly, if they're using antiquated
software, it's understandable that they didn't keep
up with modern practices. A system initially
written in 1992 in FoxPro 2.6 for DOS and
maintained over the years, doesn't particularly
lend itself to many modern developments. Simply
adding the ability to send an email can sometimes
be regarded as either black magic or just short of a
miracle.

To say nothing of software techniques. One of
Fox's cornerstones, object-oriented construction, is
completely foreign to Fox 2.6 developers, and,
given the age of many of them, can be met with
more than a little resistance if they're looking
imminent retirement.

I was talking to a customer a while ago who
was having difficulty with balancing the time
required to test the betas I was delivering and
their daily duties of current development and in
liaising with the user base. “It seems I need a
block of uninterrupted time to do my best
programming.”

I agreed, adding that in 1995, Tom DeMarco
posited that the single most critical factor in
software development was “long blocks of
uninterrupted time”, and the response was, “I
don't read books.”

Lesson: Keep on learning. But be aware that
not everyone shares your perspective.

Old Fashioned Data
Data can take many forms, and have any number
of requirements in terms of its handling – backup,
archival, portability, auditing, testability. While
not part of the original specification, over time,
applications may acquire these capabilities.

Or maybe they don't
In the beginning, say, back in the days of dual
180Kb floppy disks, we'd create the programs and
DBFs in the same place, because that's all we had
– drive B.

As soon as an application was built, certain
utilities were added, namely indexing, reindexing,
and packing of both tables and memo fields.

More often than not, due to the fragility of the
DBF file structure, a data recovery utility that
repaired busted DBF headers and other file
corruption problems was also part of the utility
suite.

Once hard disks arrived, folders were new
and magical creatures, so it was common place to
load the programs and DBFs in the root of the C
drive, after all, it just just like drive B, only bigger.
But then we got wise and created a directory for
the application.

Migrating to that directory wasn't trivial, and
it was easy to to confuse things by accidentally
creating a table in the root, and then not being
able to find it later in the directory. Thus so we'd
make sure we kept things orderly by hard-coding
the directory name in front of every file. Very
professional.

Then at some point, the requirement to move
the application to a different drive (TWO hard
drives? Who woulda thunk?) reared it's head, so it
was back to the drawing board, or editor,
removing the drive designation. Now files simply
had the directory hardcoded, such as
“\db*.dbf”.

With this extended hard disk space, faster
processors, and expanded capabilities of the
language, applications kept on getting bigger.
Data sets that became so large that keeping all of
it in one set of tables was prohibitive, either
because of processing time or simply because the
files became too large. Now we had multiple sets
of files, one for the current data, and others for
archives, maybe on a year by year basis.

Other applications grew to the point that they
used multiple directories for data, one directory
for each client, company or other entity.

At some point after the dropping of the drive
designation of part of a file specification, some
developers began storing the directory location in
a variable that was configured during installation,
and so now the application was completely
portable across drives and custom-named folders.

Applications were now being used in mission
critical applications, either on the department
level of Fortune 500 firms, or running major
operations of small companies. Accordingly, the
data was being treated more carefully. Auditing
was incorporated, so that errors in the data could
be traced back to their origin. Backup was added,
so that catastrophic loss was prevented.

Even further, data sets were being treated
more carefully. Some systems had the ability to
switch between test and production data sets, and
were structured to gracefully handle an empty or
incomplete data set.

These features – archival, portability,
auditing, backup, and testability – have become
standard fare for modern applications. But they
weren't standard in days of old. I've run into
applications that were missing every one of these
features. On the flip side, hard disks have become
many times larger than the maximum DBF size,
and the DBF and CDX structures have become
almost impervious to damage, and thus have seen
applications whose data utilities haven't been
used in so long that the users aren't aware they're
not functional any longer. Both situations, much
to the chagrin of either myself, when assuming it
was there, or the customer, when they realized
they were missing functionality they thought was
there, or that they all of a sudden needed.

Lesson: When working with an ancient
application, go through a checklist of basic
functionality, and ask the user how the absence of
a feature should be handled.

The data
So this company had developed an order and
inventory management application starting with
dBASE III+. They migrated it to FoxBASE+ for
speed gains, then to FoxPro/DOS, and a few
years later, took the big leap into GUIs, investing
in a near rewrite of the interface with FoxPro 2.6
for Windows. They were savvy developers, and
didn't need to change their data structures during
each of these migrations.

Over the next 15 years, they kept tweaking
their system, incorporating more and more
features, including modules for other
departments, first a link to accounting, then sales,

quickly followed by customer service, then the
scrap department, and so on.

Around 2011, they decided that they needed
to consider the future of their app. While they
hadn't had any major problems yet, Windows 7
was making their lives more complicated, and
they wanted to be prepared for what came next,
five to ten years down the road.

They asked me to take a look at their system.
Given they were three time zones and 3,000 miles
away, it was impractical to hop in the car (or
plane) for a quick review. Using the major miracle
that is the Internet, they arranged to zip up their
application so I could look at it here.

Fortunately, they had made their application
portable, so they could literally just zip up the
entire set of folders and subfolders the application
resided in and send it to me. Unzipping in my
“dev” folder, I was able to run the app without a
hitch. So then it was time to size and scope the
app, to give them some metrics on how big their
system was.

As with many stories that begin with
“Fortunately”, there's often an “unfortunately”
that follows. In this case, it was the data. There
was a neatly labeled folder for “data”, and,
indeed, it was chock full of DBFs, FPTs, CDXs,
and, regretfully, not an insignificant number of
IDXs. As you'll recall, this app dated back to the
late '80s, so it wasn't unexpected that no one had
bothered to delete those IDXs.

The most recent was over 10 years old, so it
was clear they weren't being used anymore, so I
created a “legacy” folder and swept all of them
into that folder. Started up the app, opened each
form, and all was good.

Then I started running the various reports,
processes and utilities. Crash after crash. I found,
incredibly, some of the routines written back then
– employing the then current single index
structure - were still in use. Some of the data files
were static look-up tables and thus the IDXs were
static as well. A couple other tables used unique
indexes for reports, and while the data changed,
the unique fields didn't see much activity, and
again were unchanged.

Lesson: Don't just assume that ancient data
structures are unneeded. Do a quick scan of the
code, searching for references to those files. Then,
don't just delete, archive off to a spare folder.

All the data
A customer with a system whose modules ran
every department had a sizable data set, close to
fifty gigabytes of DBFs.

The initial transfer of the system was done via
a couple of thumb drives with the source, current

production environment and complete data set
zipped, compressed, encrypted and spanned over
both drives using proprietary programs. (Yes, the
company was a little cautious about security.) As
a result, installing on my network was a non-
trivial process, involving multiple levels of
decompression and decryption and installation of
a few DLLs, then reconfiguring both the
development and production environments,
because their system was hard-coded to run on
their network in several places. Once the
installation was complete, doing a reinstall would
require a complete wipe of my system of
everything.

So, after several months of work, it was time
to do an update of the data, due to a new table,
some changed data structures and some test data
that had been added to one group of tables. They
had made it clear that they did a backup of the
data each night and uploaded it to a remote
server, and I could use that data whenever I
needed a refresh.

Thus, I downloaded the previous night's zip
file from the server (about 1.2 GB), delete the old
data set, and unzipped the new zip file into the
now empty folder. I continued development with
the new data for a couple of weeks, and began
gradually running into inexplicable problems.
Some results were not the same as what the
customer reported, other problems were simply
errors thrown in modules that hadn't been
changed, and thus shouldn't have had behavior
changes.

Turns out that what they been calling “the
data backup” should more accurately have been
called “the partial data backup”. It turned out that
due to the size of the data, they didn't zip up the
entire data set, just the files that had been changed
that day. They never backed up the entire data
set, other than when they backed up the network
server itself. As a result, if they had to restore the
entire data set, they had to dig out the network
server backup, and then unzip every partial set on
top of the intermittent set until they were caught
up.

At this point, you'd think that if they had a
problem, their fragmented backup strategy would
only hurt themselves. But it turns out it was
having an effect on me as well. I was using a
partial data set. A whole batch of missing files
was the problem.

And then here is the part that you tell in the
bar late at night at a conference.

When I discovered what the problem was, I
asked for the remaining data files. As best as I
could tell, the rest would take maybe another gig
and a half or two when compressed. Not that
significant a difference from the gig-plus they

were already backing up every night. Yet they
continually refused, saying the work involved
would be onerous, that it was unnecessary,
repeatedly expressing puzzlement why I couldn't
just to back to the original data set from the
thumb drives.

As a result, for the next year, I dealt with
system errors caused by missing data files that
they wouldn't send me unless I asked for them
one by one, until I had rebuilt the data set myself.

Lesson: Verify what their backups consist of,
and keep your backups yourself, regardless of
what they say and so.

And nothing but the data
Remember the company with the dBASE 3+
system and the IDXs from a few pages ago?
There's more to that story.

Turns out that even the savviest of
development teams runs out of steam at some
point. This company's Achilles heel was keeping
their system clear of cruft – such as the one-off
tables that were created for a particular report that
was used briefly, and then discarded. Indeed,
they were good about actually removing the
associated menu options from the system's menu.
But the report files and the temporary data files
needed for it weren't deleted at the same time,
you know, just in case they were needed again
some day.

Over twenty years of implementation of this
philosophy meant that both the root folder of the
system as well as the “data” folder were jam-
packed full of data files that hadn't been used in
years, in some cases, decades.

As you have likely seen yourself at some
point, a folder with 1300 files, dates ranging from
1996 to 2015, is pretty difficult to parse in terms of
which files are being used and which are
unneeded.

So as part of the cleanup for the new system,
I'd asked which tables were still being used. “Oh,
yeah, we don't do a good job of deleting unused
tables.” and they shrugged. So I solved the
problem myself:

First, I wrapped data access commands, such
as USE, SELECT (SQL) and CREATE with
scaffolding that identified when a table was
touched, writing flags to a master list of DBFs in
the folder. After running each menu option in the
system, I had a list of many tables that were
active.

Next, I did a search through the source code
to see which tables were referenced. Naturally,
this was not a sure-fire method, as macro
substitution may have been used. Still, it provided

more data about which tables were definitely still
current.

I then presented this solution to the company,
for implementation on the production system, at
which point they told me that they have another
part of their system, a set of batch files built over
decades, located on a different part of the
network, that touches this data set. As a result,
while my work did identify which tables were
used by the system in question, it didn't identify
what else touched those files.

Lesson: Don't assume that your system is the
only part of their IT infrastructure.

No, really, nothing but the data
The dBASE 3+ system had one more unexpected
issue. They used a home-grown data dictionary
for two groups of functions. The first was storing
data about the tables, such as field descriptions,
indexes, and so on, to support data utilities, such
as indexing and packing. The other group of
functions were user interface oriented – field
formats and input masks, calls to generic
validation routines, attributes such as “required”
and “unique”, and so on. No problem in either of
these cases.

Turns out that their data dictionary was the
electronic version of the Roach Motel – tables
check in, but they never check out. Once a table's
information was added to the data dictionary, it
was never removed, even if the table itself was no
longer in use. However, as a result of some
preventative coding, a table didn't need to exist
even if it was in the data dictionary, routines that
spun through the metadata simply ignored
missing tables. (Since this was a captive
application, the developers didn't feel the need to
warn about missing tables.)

As a result, it wasn't possible to determine
what tables on disk were cruft simply by looking
at the data dictionary. On the other hand, deleting
tables on disk might result in an unstable system,
even though the data dictionary wouldn't warn
you that doing so was a Bad Thing.

Lesson: The data dictionary might be just like
other dictionaries – full of spurious entries.

It Seemed Like A Good Idea
The reason that most of us are in business is
because people want custom applications. They
want things to work exactly the way THEY want.
As a result, standardized features and
mechanisms aren't always part of the package.
Indeed, custom developers will come up with the
most ingenious ways to solve a problem, even if
there was an off-the-shelf solution out there.

Only Part of the Solution
You remember the dBASE 3+ system whose data
dictionary had entries for tables that didn't have
to exist. Fortunately, most systems aren't like that.
More commonly, when a data dictionary routine
encounters a table entry for which there is no file
on disk, one of two things happens.

The first option is to warn the user that the
table is missing, and to ask whether the table
should be created or not.

The second option is to automatically create
the table without prompting.

So far, so good.
But this is only the first part of the solution.

What if the user answers 'no' to the “Table X is
missing. Create it again?” question? Will the
system handle a missing table gracefully?

Next, once you've got a new table, what next?
It's empty, after all. Many home-grown systems
assume there is data in every table. After all, once
the table was created and populated, there
wouldn't be any reason for the table to be
emptied, so those types of safeguards were never
written.

Some empty table problems cause an error to
be thrown, such as the routine that counts how
many records are in a table and positions the
record pointer on the last record. “GO liRecNo”
doesn't behave well when there aren't any records
in the table.

Other empty table problems are more subtle.
For example, a JOIN that assumes the existence of
records in lookup tables will return an empty set
if there are no lookup records, thus misleading the
user into thinking there are no records at all for
that query.

Lesson: Ask what behaviors should be
occurring in the situations of missing and empty
tables – even if “that would never happen.”

DBFs Are Just Files
One of the downsides of xBASE applications has
always been that the data files are simply files on
disk, without any inherent protection from
external tomfoolery. As Windows became more
sophisticated, it was possible to lock down the
folder with the data via rights, but that's not
always done.

I consulted on an application for a bank that
started losing index files on a regular basis. The
system had been written in the pre-CDX days,
and thus there were hundreds of IDX files in the
data folder. Every week or so, a small batch of the
IDXs disappeared.

As is often the case with these older
applications, the system had been written by a
highly skilled developer at the time. After a few

years, it had been handed down to another
developer who didn't need to spend as much time
on it, and thus wasn't as skilled. The third
developer, now ten years later, was more of a
part-time programmer than a developer, and was
tasked with occasional maintenance. As a result,
the code started looking like it had been poked
with a sharp stick, and became increasingly
difficult to follow.

When the IDX files began to disappear, they
resorted to a number of temporary patches, but as
the problem became endemic, they decided they
had to fix it properly. I found there was no
automated index recreation routine, just a page of
notes that described which indexes belonged to
which tables, and a standalone PRG that recreated
them.

As the first step to fixing a problem is
attempting to replicate it, I tracked down which
IDX files were going MIA. It was truly a mystery,
there seemed to be no pattern to which ones were
disappearing. The same ones were vanishing each
week, but one table's IDXs were never touched
while another table had the same four go AWOL
regularly.

Until one day I sorted the list of missing files
and realized there WAS a pattern. Turns out they
used a naming convention for the IDX files
whereby the first three letters of the first fields in
the index expression were used to create the IDX
name. So, for example, the IDX file that indexed
on a person's title and the branch they worked at
had a six letter name. And the IDX file that
indexed on a person's shift, the theatre they
worked in (a sub-group of employees), and the
administrative code had an eight letter IDX name.
Seriously.

And not so long ago, they had hired a new
administrative assistant who had taken it upon
herself to police the IT infrastructure, including
deleting files that appeared to be inappropriate.
And her hire date was when the IDX files started
disappearing.

Problem solved.
Lesson: There is no lesson, it's just a great

story. Or maybe the lesson is “when you least
expect it, expect it.”

The Mostly Not Needed Hardcoded Path
As mentioned earlier, the proper use of paths is
now a foregone conclusion, but it wasn't always
that way. There are a lot of applications out there
that assume that data will be located in
C:\DBDATA or somewhere similar, and thus
have that path hard-coded throughout the code.

As the developer's skill level evolved, it
wasn't uncommon for them to start refactoring the

application to use a variable to hold the dataset
path, initializing that variable during startup,
perhaps via a config file.

However, sometimes this approach was only
done partway – new code used the path variable,
and as old code was modified, the path variable
replaced the hard-coded path, but a full scale
search and destroy effort on the hard-coded path
was never implemented.

As a result, there are still places in the code
that refer to the original “C:\DBDATA” location,
and that code has never been discovered, because
their installation of the application still has data in
that folder. But when you install a version of the
application on your machine, resulting in the data
landing in H:\DEV\CUST_A\DBDATA.

Lesson: The first time you run into a hard-
coded path, do a search for that string throughout
the entire application.

If One Is Good, Then Two Must Be Better
One bit of fallout from the gradual
implementation of paths for datasets can be
mistakes made while coming up that learning
curve. As a result, it's not uncommon for the same
data file to be found both in the root folder of the
application as well as the data folder.

If the table is a lookup or minor entity that is
rarely or never updated, then having duplicate
versions won't be much of a problem.

If it gets changed all the time, a problem will
surface quickly and require repair.

However, if it's updated intermittently, it may
not be obvious that the application is pulling data
out of one version or the other at different times.
Say it's a lookup table with a list of codes for
transactions, and those codes get updated a
couple of times a year for new types of
transactions.

Reports run against the old version of the
table may result in the most recent transactions
(using the new codes) being left off the report,
and no one will be aware until it's obvious that
there is a LOT of missing data.

Lesson: Do a complete sweep of the data
tables in the application folders, looking for
duplicates.

I Don't Think That Word Means What
You Think It Does

Without external inputs, the way we react to
stimuli is conditioned by our past experiences.
These external inputs are collectively called
'context'. The way we interpret a word is based on
our history with that word, unless we are given a
different context.

file:///C:/DBDATA
file:///C:/DBDATA

As someone with a long history in
manufacturing, the words 'raw material', 'part',
'assembly' and 'component' have very specific
meanings in the food chain. Thus, when I hard
someone refer to a transmission provided by a
supplier as a 'raw material', I was understandably
confused – generally, a transmission would be
called a component.

Similarly, much confusion abounded when a
customer used the term 'part' for what turned out
to be a combination of parts – an assembly. That
required a significant reworking of the data
structures.

So when a customer mentioned they had an
auditing feature in their system that tracked all
changes to the data, I assumed that, based on my
experience with other auditing systems, 'changes'
included adds and deletes. Turns out, not so
much.

When they wrote their auditing mechanism,
their only concern was just modifications to
existing entries in certain tables. They didn't really
care about new records or records that were
deleted – every record had fields for 'added by'
and 'deleted by' that provided that tracking
capability. No, their auditing mechanism only
recorded actual changes to contents in a discrete
field. I ended up reworking the new auditing
mechanism to satisfy their interpretation of the
word 'changes'.

Lesson: Spell out what the words mean.
Definite the exact functionality.

Conclusions
These may seem like trivial lessons. As you read
through them, you may not be learning anything
new as much as being reminded about things that
you knew once upon a time but haven't needed in
a long time now. So consider this article as a
checklist. Airline pilots, even the most
experienced, still use a checklist every time they
get in a plane. You should too.

I've compiled a similar group of stories,
together with corresponding lessons, on code.
Based on the feedback I get on this article, I'll put
them together in a future article.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Lessons From A VFP Conversion Gone Bad
	Preliminaries
	Chicken Or Egg? Start with Code or Data?
	Things Are The Way They Are...
	The more things change, the more they change
	Sophistication Is as Sophistication Does
	Sometimes Good Enough is Good Enough
	But sometimes they stayed that way

	Old Fashioned Data
	Or maybe they don't
	The data
	All the data
	And nothing but the data
	No, really, nothing but the data

	It Seemed Like A Good Idea
	Only Part of the Solution
	DBFs Are Just Files
	The Mostly Not Needed Hardcoded Path
	If One Is Good, Then Two Must Be Better
	I Don't Think That Word Means What You Think It Does

	Conclusions
	Author Profile

