
Lessons From A VFP
Conversion Gone Bad - II

Whil Hentzen

There's plenty of work out there doing FoxPro 2.x
to Visual FoxPro conversions (even FoxBase and
FoxPro 1.0 to VFP), and that capability will
continue to be in demand for another five years or
more as companies try to leverage their
investment in decades of existing code and data
through 2020 and beyond.

I've been involved in a number of conversions,
ranging from 500 to 3000 hours over the last few
years, and have seen my share of successes - as
well as a disaster or two. I'd like to share some my
experiences.

Today, I'll take a different approach from most
articles, which are often technical how-to
descriptions. Everyone loves a good story, and
everyone loves watching a train wreck (as long as
they are out of danger themselves.) Thus, I'll tell a
number of stories, each a miniature disaster,
either from my own experience or from a peer.
Finally, much like Aesop's fables, each story will
conclude with a lesson.

Last issue's article evidently struck a chord
with many of you. We've all shared a war story or
two in the bar after a full day of conference
sessions, but that's different than admitting one's
goof-ups in print, to say nothing of developing a
rough classification of areas prone to failure. And
last article simply related data-related stories. So,
we'll continue this issue with the other half of the
chicken and egg quandary - code.

Before digging into the specifics, I want to
review the multi-fold purpose of this article.

Some of these stories are just stories, offered
to help you commiserate, so that you don't think
you're the only one who has run into that
situation, or, in some cases, the only developer
who has pulled such a bonehead stunt
themselves.) After all, software development is
90% technical expertise. The other 90% is having
the right mental attitude.

Stories can also be instructional. Software
development can sometimes be more art than

science, and the broader your base of experience,
the more likely you'll be able to solve a problem.
That broad base of experience doesn't have to be
learned in the first person; some of it can be
supplied by talking to other developers. Some of
you may remember the story tossed around at
multiple conferences about the application that
was running extremely slow. The story teller
explained how he opened up the guilty form, and
(I'm paraphrasing) found this line of code in the
form's init:

select * from ITEMS into array AllItems

and then a few unrelated lines below, found
this line of code:

select * from ITEMS into array AllItems

Naturally, further investigation found that the
AllItems array was never used anywhere else in
the form. The client was flabbergasted as how fast
the form was the next time they used it.

Other stories provide a compendium of things
to look out for when working on old code, so as to
avoid land mines ahead of time. I'm not implying
that this is the be-all and end-all checklist of
danger zones, but they represent situations that
I've run into time and time again.

Throughout, there is an underlying theme
that cautions us that people can be unbelievable.
The first draft of this article had a mean tone to it,
born out of frustration and exasperation with
situations that were at times close to
inconceivable. (Say it with me, Princess Bride
fans, "I don't think that word means what you
think it means.")

To be sure, once in a while one runs into
someone who really shouldn't be involved in
software development. As the sign on my wall
says, "If you don't know what you're doing, don't
do it here." Yet even then, we need to remember
that ofttimes the inept are not in their position
due to personal malfeasance, but rather out of
circumstances beyond their control - perhaps
ignorance or desperation of management, who

simply needs a body, any body, to take over a
sudden need in a project.

Thus, at the end, I'll sum up with a couple of
stories that remind us that most of the problems
we encounter with conversions are not technical
ones, but people ones.

Finally, a reminder that you may not be
learning anything new as much as being
reminded about things that you knew once upon
a time but haven't needed in a long time now.
Some of the situations are things that we
ourselves used to do, but have been deprecated,
or we now simply know better. If they sound
familiar, it's because we have simply forgotten
that we used to do these things ourselves. "It
seemed like a good idea at the time."

With those caveats, let's begin.

Warming Up – Tales From The Dark
Side

These are the stories we tell at the bar after the
formal conference sessions have ended. There are
no lessons here, they're just silly.

I Don't Think That Word Means What
You Think It Means

This one won't take long. I saw this in a
comment one day:

* move all values into a 3 dimensional array

Quick, I ran back to my collection of "What's
New In VFP n" books to find out when multi-
dimensional arrays were added to the product.
Not a single mention. So reading the rest of the
code in the routine, I realized the developer meant

* move all values into a 3 column array

Nor Do I Think That Word Does What
You Think It Does

I was debugging a particular bit of
functionality in an app and did a search for a
particular string that showed up in the error
message being thrown. Found it in the middle of a
PRG, and then began working backwards to
figure out what was going on in the routine. At
the very top of the program, I found this code
segment (simplified for this example):

* This code was added after the plastics
* division was moved to a separate facility

lcOldLocation = facility.location
lcPrimaryLocation = ;
 FindLocation(lcOldLocation)

<some processing>

replace location with lcOldLocation, ;
 primary with lcPrimaryLocation

And the problem was that the value of
lcOldLocation had changed. How could that be?
Until I looked in the FindLocation function and
found that it was changing the value of a similarly
named variable, lcOldLocation. Naturally, that
shouldn't happen, because the 'l' starting the
variable name indicates that it's scope is local,
right? Except that there wasn't a local declaration
anywhere in the executing routine (or in the
function.)

Finally, the original developer offers the
explanation: "I thought that naming the variable
with 'l' would make it local. That's what happens
with private variables."

Except that, no, that's not what happens with
variables that begin with a 'p', they just appears to
work that way from the way they had always
structured their code.

Result: an entire application's structure
predicated on the assumption that variables that
were named with a leading 'l' were assumed to be
local in scope. As you can imagine, hijinks
ensued.

I STILL Don't Think That Word Does
What You Think It Does

When modifying and extending an existing
system, my rule of thumb in determining which
style of coding to use depends on who the
ultimate maintainer will be. If I'm simply
contracted to write a module that they customer
will maintain, I think my code should look like
the existing code, so that they don't have to restart
their brain to work on my contribution. On the
other hand, if I'm taking the system over, then I'll
use my own conventions, because I need to be
able to read it later.

Last fall, I was working on a conversion that
fell halfway in between. They wanted me to
convert the entire system, start to finish, but then
they were going to maintain it, with ongoing
support from me.

Since I was bringing them out of the 2.0 dark
ages, I thought it best to train them with
somewhat more modern techniques, including
using Hungarian notation. The first delivery of
course was met with disdain for the naming
convention, despite it's regular (albeit not
consistent) use throughout the existing 25 year old
codebase.

"We don't like using Hungarian, it causes too
many problems."

"Such as?"

"What if you have to change the data type of
the variable? Then you have to go back through
and rename all of the variables."

My explanation that if you're changing the
data type of a variable in mid-stream, you've got
bigger issues than renaming to worry about.
Because you'll have to go through all of the code
that uses that variable and see what the
ramifications will be anyway. For example, the
following line

messagebox("There are no machines with " ;
 + lcStatus + " components.")

will crash if lcStatus is changed from
character to numeric. They understood that, and
did make the necessary changes to code to handle
datatype changes, but, somehow, they felt that the
little bit extra work to tweak the name as well, so
that it was readable later, was too much work.
Alas, I wasn't able to convince them to go the final
step with renaming, and wrestled with misnamed
variables throughout the app for the rest of the
project. I can't count how many times I got burned
when dealing with their security system, for
example, - gnRights and gcSecurity were both
numeric values.

PPPPPP
For those of you who haven't spent time in

the miltary, this acronym politely expands to
"Prior Planning Prevents Positively Poor
Performance".

Ran into a system with a complicated series of
class libraries, including one collection of forms
named so that the hierarchy is obvious:

f_0
f_1
f_2
f_3

It took quite a while to grok what the
differences were, and I still have a post-it attached
to my monitor reminding me about some of the
subtle nuances. Then a new developer at the
company added a fifth, subclassing from f_3 due
to a new set of requirements. Except that, working
in somewhat of a vacuum, he named it

f_04

and created a number of forms based on it.
Then someone pointed out that in every list of
libraries (File Explorer, Project Manager, etc), this:

f_0
f_04
f_1
f_2
f_3

was the order displayed. He, as many
programmers are wont to do, refused to accept
culpability, and wouldn't do the grunt work of
renaming. Everyone else on the team refused as
well ("It's not MY fault") and the libraries have
looked like that ever since.

Variable Scoping Is Fun, Fun, Fun
Another example of their misunderstanding

didn't cause program errors as much as confusion.
Rife through the system were statements like this
found in the 'Run' button's click() method:

select * where type = m.ltype

But where does m.ltype come from? It's not in
the click() method. It turns out that it's been
defined as a global variable, and then the value of
a control on the form is bound to that variable.

Well, For Instance...
20-some years ago, I had build a fairly simple

application for a customer and then turned it over
to their in-house Fox developer, one of those
'legend in his own minds' fellows. I spent a day
walking him through how it worked, gave him a
copy of my Programming VFP 3.0 book, taking
pains to explain how functionality in forms was
provided by code in the classes for those forms,
and that was that.

Six or seven months later, he runs into me at a
meeting and explains that he had recently had the
need to make some modifications to the app, and,
damn it, he could NOT find the code that did a lot
of the basic add/edit/delete processes, so he had
to essentially rewrite my app to make it work. He
was extremely unhappy with me and made it
clear to everyone he could bend an ear about what
a lousy job I did.

And then a couple years later, another chance
meeting where he announced that he cleverly
discovered this other set of files called classes, and
THAT'S where all the code was! Imagine.

That type of misunderstanding happens more
often than one would expect. I took over an
system a while back where the application was
based on one of the popular VFP frameworks. The
framework had been extended substantially by
another consultant, to the point where the entire
system was class-based. Forms were collections of
classes assembled together, with very little
instance-specific code needed. I was, frankly, a
little intimidated at how well the functionality
had been thought through and abstracted, so that
a few custom methods and the setting of a half
dozen properties were all that was needed to
implement a form. Every report form, for
example, was assembled from a selection of

container widgets that provided functionality
such as 'select one or all companies', 'select the
span of years to query', 'include employees',
'include dependents', 'include retirees'. Some
forms had a couple of custom controls, such as an
option group for filtering the vehicle fleet being
reported on.

Until it came time to start making
modifications. Analyzing the operation of a
report, with these standard widgets, required the
tracing of code through three, four, five or even
six levels of classes. Until I found why there was
virtually no code in the report generation form
itself. All instance-specific processing was
handled in a giant case structure like so:

case ReportForm = 'RETIREE'
case ReportForm = 'DEBTS'
case ReportForm = 'LAYOFFS'
case ReportForm = 'PLANT ACQUISITION'

When I say 'giant', I mean tens of thousands
of lines long, with hundreds of CASE statements.

And this instance-specific code was contained
in one of the base class definitions.

Even better, all of the handling needed for the
custom processing (such as the option group for
vehicle filtering) was also done in the base class
definition, in the CASE for that specific report.

Again, clearly didn't understand the use of
class construction and subclassing. It took several
months before my mind was trained to
automatically look in the class defs for instance
code particulars.

Belts and Suspenders
Working through the code in a system from a

while back, I discovered that there were very few
ELSE clauses in IF constructs, and absolutely no
OTHERWISE clauses in any DO CASE structures.

When asked about the practice, suggesting
that trapping for 'the case that will never happen'
is a sound principle, I was told 'it never seems to
be a problem for us'. Except that then for the next
year I'd regularly hear from users about errors
that would get thrown. They'd learned
workarounds for those errors; when I started
adding segments like

ELSE
 messagebox("Vehicle ID empty",
 "This will never happen")

into the branching constructs, well, what do
you know?

Lesson: You know this one. Build an idiot
proof system and the customer will hire a cleverer
idiot.

The Hard-Coded Developer Login
More than one system I've run into (including

my own, of course) has had a secret developer
login. This login provides access to special
developer-only features, such as opening a
command window, view window, and the
debugger. I've also seen this feature used in the
code itself, like so:

if user=ME
 do SomethingSpecial.prg
endif

The problem comes when the developer
doesn't provide the 'SomethingSpecial.prg', and
thus when you run the system, it crashes.

Wisdom – Wish I'd Know That When...

Standards Are Good - That's Why We
Have So Many Of Them

This one is (partly) my fault. If you run into
the application in question, I apologize in
advance.

I'd been brought in to overhaul and take over
the maintenance of a large application being used
by multiple departments in a mid-size company.
It was one of those applications that had been
developed 20 years ago, by a group of
programmers who were consistent in their
application of practices that they had developed
inhouse. The app had then been maintained
under the watchful eye of a senior programmer
who ensured that those practices were followed.

Then came a change of IT management, and
with it, a review of all systems to bring them up to
modern standards. One of the decisions was to
update the code as modifications were being
introduced to follow 'more modern standards'.
One of those more modern standards was a
thorough combing of the code to make variable
naming consistent. These changes included
changing variable names to use common
abbreviations consistently, adding 'm.' to all
variable names, and converting to Hungarian
scope and type identifiers. Thus, the panoply of
versions for a last name - 'lastname', 'lname',
'namelast', 'last_name', and so on - would all be
converted to 'namel'.

However, doing a wholesale review and
refactor of the codebase would have been
unreasonably time-consuming and fraught with
peril, so they opted to make changes gradually.
All new and modified code would heretofore
follow the new standards, but existing code
wouldn't be changed.

Thus, a year later, the codebase was rife with
code like this:

replace tier with action+rank, ;
 startdt with startdt, ;
 enddt with enddt, ;
 reason with reason, ;
 effectdt with effectdt, ;
 code with m.lccode, ;
 status with m.lcstatus

You see which part of this one statement had
been modified recently, don't you?

Another year into this project, and
management decided that they didn't want to put
anymore money into the app, and chose to instead
focus their efforts into a all-hands-on-deck switch
to a .NET application that should last through
2020. Last I heard (3 years later), they're still
working on getting the first build to beta testing.
I'm not one to throw stones; this article is nearly
as late.

Lesson: A trite amorphism about not
changing horses in mid-stream is tempting, but
the bigger message is when asked to 'gradually'
move code from one set of conventions to another,
to more clearly define the benefits. While the
resulting code was starting to 'look better', the
juxtaposition of old and new was actually more
jarring than had it all been left alone.

You Can't Know It All
I remember our friend Drew Speedie standing

up in front of a user group, taking questions at the
end of his presentation. Someone asked him about
how to handle a problem with a report he was
struggling with. Drew said, "I have no idea. I
haven't written a report in five years. We've got a
couple people on our team that specialize in that."

As I was writing the first draft of this article, I
ran into a system where the developer had made
great use of combo boxes. Needing to modify the
contents of one of them, I opened one of the code
windows for the form, and did a quick search for
the name of the control, figuring I'd find the
reference that populated it.

Oddly, no luck.
Hmmmm, maybe this form uses a parent class

to populate the control. A little bit more
searching. Still no luck. Ah, I then realized that
the combo population must be abstracted through
the use of a generic function call that passes the
name of the control, assembled in pieces,
somewhere in the base classes. So I searched for
substrings of the name.

No joy.
This was getting a little out of hand. I should

be busy getting my work done, not searching for

something that I should have found in 15 seconds.
And I'm running out of answers.

Until I accidentally clicked on the Properties
window when the combo in question was
highlighted, and saw all sorts of strings in bold in
the Data tab. Oh, look, they're using Type = 2-
Alias. Since I've been exclusively populating
combos using Type = 5-Array for twenty years, I
had totally forgotten that other people populated
combos differently.

Lesson: It's OK, bunkie, you can't know it all.
You can't even know most of it.

You've Never Seen It All
I was asked to extend a VFP application that

had been in use for nearly ten years. It'd started
out life as a standard out-of-the-box system based
on a popular VFP framework. At one point, the
development team morphed it into a custom n-
tier architecture, and then a few years later, gave
up on that attempt, going back to straight table
access, but with business objects strewn here and
there. If you're picturing Jeff Goldblum crawling
out of the pod, half-man, half-fly, in the remake of
The Fly, you'd be spot on. Except no hot female
love interest.

Anyway, the application worked really well
(despite itself.) It was simply difficult to follow
the code, what with the multitude of class
libraries, which may or may not be in play in any
particular module of the app. It was pretty
common to run into code segments that looks like
this:

this.parent.mst_dataobj.l_cursor_name=lcCursorSubset
this.parent.mst_dataobj.l_databasename =
lcDataPath+'division\client'
this.parent.mst_dataobj.l_tablename='mastercheck'
this.parent.mst_dataobj.l_filter=lcFilterString
this.parent.mst_Dataobj.l_check_memo=lcCommentRaw
this.parent.mst_dataobj.l_openchecks

Read through that code carefully. You'll see
that there's an obvious error in the last line - the
l_openchecks property isn't being assigned a
value. You may be wondering how that passed
the compiler without throwing an error. I assure
you, it didn't. How? One of those

on error *

statements we've all seen in an app that
prevents error messages from bothering users?
Nope. Let's explore further.

In another module, I came across a code
segment that looked like this:

this.ohandle.mst_dataobj.sub_dataobj.opentables()
if
this.ohandle.mst_dataobj.sub_dataobj.tablesAreInitial
ized
 lcFactory = this.parent.caller

Clearly, the last line could use some
improvement, as the lcFactory variable is being
assigned an object (the caller of the parent) but it's
named as a character variable. Again, this is not a
mistake. Rather, it's another example of the same
situation.

The lead developer who had taken over the
dismantling of the n-tier architecture discovered
that method calls do not need to have parens.
Thus, these two statements worked identically:

this.opentables()
this.opentables

And he, in a perverse fit of ego, decided that
he was no longer going to use parens, regardless
of how difficult they made the code to maintain,
simply because *he didn't have to*.

Thus, the

this. parent.mst_dataobj.l_openchecks

statement was actually a call to the
l_openchecks() method, and the

lcFactory = this.parent.caller

was actually assigning the return value of the
caller() method to the lcFactory variable.
Obnoxious, to be sure, and made followup work
on the app just that much more difficult,
particularly when some methods in a series had
parents and others didn't.

Lesson: Just when you think you've seen it all,
you still haven't.

Customers Say The Darndest Things
These don't really have 'lessons' per se as

much as provide solace to you when you want to
bang your head against a wall.

There Are So Many!!!
I was working through the conversion of a

series of screens that made copious use of the
following code structure in the when() method to
restrict access to fields on the screen:

if <condition>
 return .f.
endif

The problem being, of course, is that there's
no visual clue that the field isn't editable.

Being of the 'visual clue' school myself, I
found this difficult to deal with, as it was never
evident when a field could be edited or not; the
user was simply prevented from tabbing or
clicking into it, without explanation. The
reasoning behind the technique was "This was

easiest to do, and besides, our users know how to
use screens."

Fortunately, during the conversion, a number
of new employees were being hired, and they
agreed that making the forms more visually
educational would be a good idea for the new
version.

In doing so, I naturally took advantage of the
methods available in VFP 9 in addition to when()
and valid(), such as gotfocus(), lostfocus(),
setfocus(), keypress(), interactivechange() and
programmaticchange(). The first time they saw
one of the new forms and how the new methods
were used, their first comment was "Why do there
have to be so many methods? Can't you just use
when() and valid() for everything? We don't have
time to learn all of those."

Something Old, Something New,
Something Browsey

Most of us remember the pain and agony
spent in coordinating BROWSES with the 2.x
READ architecture. (Those of you who don't, well,
you suffered just like the rest of us, you're just
lucky to have a failing memory.)

I had spent a not-inconsiderable amount of
time building a custom framework to replace the
multitude of browses used in a system being
converted from 2.5 to 9, replicating grid layouts,
window positions, record placement, incremental
search, and on-the-fly data entry.

Behind the scenes, I used all of the usual
tricks, including co-opting their data dictionary,
overlaying parameters to data-drive virtually all
of the custom behavior, and even building a tool
that allowed them to customize the column
properties on the fly.

This all relied on a grid in a form, of course,
and the resultant issues with returning more than
one value from the selected record, of course.
Different than simply SCATTERing the memvars
in 2.x. But we made it work and there were
benefits, such as multiple browses open and
participating in the event loop, adding them to the
Window menu, and so on.

Until the prime developer saw the code
underneath, and went a little nuts at the
abstraction used to data drive the entire process.

“That seems like a lot of work. Why can't you
just keep the old browses?"

Along the same lines, the same folks resisted
when seeing how forms were created. They kinda
liked not having to compile SPRs, having never
bought into the bastardization that is
“customizing the SPR file” like some, but at the
same time, I heard more than once,

“We like the control we have by using
@SAY/GET. Not knowing what the final code is
going to look like, that's just uncomfortable.”

And even FURTHER along those same lines,
finding that references to controls on the form
involved structures like

thisform.txtFirstName.value

and, worse,

thisform.pgfMaster.pgMotors.txtID.value

well, you'd think their head was going to
explode.

Lesson: They don't always want to invest in
learning new things.

Do What I Meant, Not What I Said
Every user learns to work around the system they
use, whether it be standing in line at their local
coffee shop or printing multiple reports at the
same time, instead of having to wait for one to
enter the queue before closing the form and going
onto the next.

As a result, when they come across
inconsistent behavior, they learn to live with it,
they even learn to expect the behavior.

I made the mistake of 'fixing' some of those
errant behaviors in a system I was converting. For
example, the user would be on Al's record,
navigate down the table a bit to Gerry's, hit the
browse button, view some data, and after closing
the browse, the form would be back on Al's
record, not Gerry's, as might be expected. In most
cases, I didn't even realize that I was fixing
problems like that; I was simply assuming that the
behavior I would expect they wanted was what
was currently happening.

And then I delivered the first build to the
customer, for their users to start working with.

Naturally I was expecting a suite of bug
reports, but to see dozens of complaints that the
system wasn't working incorrectly like the
previous version did, that was kind of a shocker.

Do What I Meant, Not What I Said,
Redux

So the user said “Make it work just like the old
version” except that they want changes here, and
here, and, yes, over here, but other than that, it
has to work just like the old one – except that the
tricks to implement the older functionality ae no
longer needed, or in some cases, available exactly
the same way, since that system was 20 years old.
Witness the following conversation, repeated
several times over a six month span of a
conversation project:

“We must be able to use JKEY to provide
incremental searching in our lists.”

“Well, we can't JKEY, because it doesn't work
with VFP. But that's OK, because we can build the
same mechanism with native VFP code.”

“We don't want to write extra code, we just
want to use JKEY. We've been using it, it works,
and that's what we know.”

“But....”
Lesson: Sometimes they REALLY don't want

to invest in learning new things.

You Show Me Yours
Converting a medium size 2.5 system (80

screens or so), I build a set of form classes to
handle the variety of forms they had in the old
system. Some of their forms were extremely
complex, with literally hundreds of controls and
complex logic that dictated the interaction
between them. Additionally, there was code that
handled add/edit/delete rights according to both
who was working on the form. Certain users had
full access to the screen while others only had
access to edit certain fields, and still others only
had read-only privileges.

Furthermore, privileges depended on the type
of record being displayed in the system. If a motor
had shipped, it couldn't be deleted, and many
fields are no longer editable.

As you can imagine, not only were there lots
of twisty passages in the WHEN and VALID
clauses, all nearly alike, the SHOW GETS for the
screen was both enormous and convoluted. As
requirements changed, they'd slap a band-aid on
the code to get it working immediately, instead of
considering a more maintainable approach.

If it sounds like I'm complaining or making
fun, I'm not, we've all done that at one time or
another. Those marketing folks who want the
form NOW can be pretty pushy, right? "Things
are the way they are because they got that way."

Naturally, this complexity could (and should)
be broken into more manageable pieces in VFP. It
would give a chance to finally re architect and fix
some of the fragile spaghetti code issues that have
grown over time as well as make it more easily
maintainable for changes in the future.

I presented the first beta version of the form
to them, at which point it was summarily rejected.
The explanation?

"We worked hard to get our SHOW GETS
working just right. We want to keep using them."

I ended up trashing most of the architecture
developed for the form classes, and creating a
single ShowGets() method that was called
everywhere. As you recall, 2.x SHOW GETS

include explicit references to the screen's controls,
like so:

SHOW GETS m.Type ENABLED

Those variables are also used elsewhere in the
logic. While it's possible to bind VFP form
controls to memory variables, there are reasons
that you may choose not to do so. Personally, I
find the practice makes the code be difficult to
read and maintain. So, instead, I set up a series of
translations at the beginning of all ShowGets()
methods, like so:

m.Type = thisform.txtType.value

which meant that much of the code in the
ShowGets() could remain essentially unchanged,
a win for everyone.

In order to deal with maintenance issues, I
then wrote a huge header for each form's
ShowGets() that explained in detail the logic
inside and the decisions made throughout the
code, as a mini-tutorial for the next time I, or
someone else, would have to venture into the
code.

Lesson: The customer isn't always right, but
they're always the customer.

Lesson Redux: They have a huge investment
in current code and will go to almost any length
to not throw it away.

Advice – The Start of a Checklist
I've thought about putting together a formal

checklist of everything I'd like to look for when
reviewing a new system. As the saying goes, “So
many pedestrians, so little time”, thus, alas, I
haven't. But here's a start.

Globals Everywhere!
The developer created a variable in a routine.

Later, he discovered that this variable was needed
elsewhere. Instead of passing the variable as a
parameter or making it a property of an
appropriately scoped object, they do what they
did back with dBASE III+: declared it global.
There, THAT fixed it!

Except that he did it in the middle of a
subroutine buried deep in the bowels of the
system.

One of the tests I run when first examining a
new application is to do a comprehensive search
on the word 'public' in the app. If I see entries like
this:

File name Class.Method,Line Code
SomePr.prg searchVIN, 307 public name, type

(because why would you declare a global
variable 300 lines into a supporting routine), I
throw up a little in my mouth.

Lesson: Some programmers aren't as
disciplined as others.

The Missing Procedure File
You'll always find calls to custom functions

when investigating an application that needs to be
converted, like so:

m.lcNewValue = SomeFunction(m.lcOldValue,
 m.llConversionFlag)

I've always used a naming convention to help
identify where a function is located, perhaps
something like this:

l_ - subroutines in standalone PRGs
x_ - standalone functions, application
specific
y_ - functions contain in the application's
procedure file
z_ - functions contained in my generic HW
procedure file

Unfortunately, I've never run into an app
where the developers have used a naming
convention, either through lack of forethought or
discipline. So, faced with the desire to find out
what SomeFunction does, it's time to undertake a
spelunking adventure. Since pretty much every
application I've worked on has generated this
type of scenario, I've developed a rubric for
dealing with it.

First, if the function is being called from a
PRG file, I'll open up the Document View window
to see if the function is defined somewhere in the
PRG. The Document View window has several
advantages over Find. First, it'll display only
function/procedure definitions, not every call to
that function. Second, if the function was defined
more than once in the PRG file (yes, it happens),
that becomes evident immediately. And third,
double-clicking on the name moves you right to
the function definition in the PRG, handy if the
PRG is hundreds or thousands of lines long.

If that search yields nothing, or if the function
isn't being called from a PRG file, the next place to
look is the systems procedure file. When
examining an application, I always lay out the
structure of the application, including the target
of the main program's SET PROCEDURE TO
statement. So, again, with Document View open, I
open MainProc.prg.

Now if that fails, I'll look in the PROGRAMS\
folder for the SomeFunction.prg file. If that
produces no joy, finally, it's time to bring out
Code References (or GoFish, if you're so inclined.)

Sound reasonable? Well, here's how it played
out in one situation.

The application I was working on had tens of
thousands of function calls, and there was no
rhyme or reason for where the function was
located - the framework's procedure file, the
application's procedure file, the PRG that it was
called from, or in the PROGRAMS\ folder that
contained all of the standalone PRGs. It was quite
a nuisance to have four places to look every time a
function had to be examined.

However, it turned out that some functions
couldn't be found in any of those four locations.
There were two problems. The first is that some
standalone PRGs weren't located in the
PROGRAMS\ folder. A few were in the root,
others were in the SCREENS\ folder, and still
others in the REPORTS\ folder. The reasoning?
"This PRG is only called from this one screen, so I
put it in the SCREENS folder so I could find it
easily.

The second problem was even better. At
certain points in the system, a specialized,
complicated procedure was being run. It was
similar to another process, except that it had
different things to do throughout. So they used a
second procedure file, like so:

lcOldProcFile = set('procedure')
set procedure to NewProc
<lots of code>
set procedure to &lcOldProcFile

The best part? The functions in the NewProc
file were the same names as in the original
procfile. So they could run processes and point to
either the original or the substitute proc file, using
the same function calls, but different things were
being done. Very clever, a procedural version of
subclassing. But without documentation, it was
devilishly hard to figure out why.

Lessons: 1) do an inventory of all the places
PRG files could be. 2) do a search on SET PROC
TO in the entire application.

Scaffolding
A year ago I was tasked with converting a

small but complex system written in 2.6. It was
very sophisticated, and, interestingly, the primary
motivation for moving to VFP was not 2.6's EOL
but the need for capabilities that VFP had.

While the development team had become
extremely adept with 2.6, they had not invested
any time in VFP. They needed to come up to
speed quickly. We forget that we've had years and
years (and decades and decades) of experience.
Trying to learn all of the new features of VFP, as
well as develop an object-oriented mindset, is
daunting.

One thing I've done for all customers new (or
even new-ish) to VFP is incorporate a debugging
scaffold into the application's class library
hierarchy as well as each form and process in the
system.

The scaffold incorporates a custom function
that outputs strings to the Debug Output window
(or, optionally, to a text file, should the Debug
Output window not be available, such as during
execution of a production EXE.)

The function is passed both a flag and one or
more strings. The flag indicates whether the
strings are output or not, and the strings are
displayed one after another, due to the fortuitous
architecture of 'debugout', unlike 'wait window'
or 'messagebox', to accept multiple parameters.
The following command displays

lcStatus is:ACTIVE:

when the glShow flag is true.

goApp.debugox(glShow, ;
 'frmJoin.tenderApp() lcStatus is:', ;
 lcStatus, ':')

You'll notice a couple of things in this
command. First, I've identified the name of the
form and the method that this command is
located. It may be obvious where the command is
when it was first added to the code, but a day,
week or month later, not nearly as much.

Second, the leading and trailing semi-colons
are to distinctively delineate the variable. In cases
where the variable is blank, it may not be obvious,
particularly after a few dozen scaffold commands
have been added and you're trying to quickly
scan through the output, looking for a particular
piece of information.

There are four general levels to this scaffold.
The first level are statements at the beginning

of every method in the framework as well as
every custom method that runs code. Here's a
simple example:

goApp.debugox(glShowMethod, ;
 'Starting frmMain.init()')

Depending on the complexity of your system,
you could break this into multiple levels.

Running the program and watching what
shows up in the Debug Output window can be
extremely educational and helpful to the VFP
developer coming up to speed. But at the same
time, it can produce a lot of output, most of it
unnecessary when trying to debug a particular
process problem. Hence, the flag that can be set to
false and suppress that output.

The second level of scaffolding is done within
a single method. The llShowThis flag is set to true

when debugging what's happening in that
method,

goApp.debugox(llShowThis, ;
 'lcStatus starts out as:', lcStatus, ':')
<some code>
goApp.debugox(llShowThis, ;
 'After 1st query,lcStatus value:', ;
 lcStatus, ':')
<some code>
goApp.debugox(llShowThis, ;
 'After 2nd query,lcStatus value:', ;
 lcStatus, ':')

The advantage of this mechanism is that the
developer can trace what's going on in a very
granular fashion, and then turn the whole output
off with one keystroke, and then turn it back on
again later if needed.

This second level can be extended to span
multiple methods, even multiple forms, to trace
the internals of a complex process. In that
situation, the flag needs to be defined at an
appropriate level in the system, generally in the
main program.

Finally, once in a while, you may find that
you need to do a dump of a particular area for a
one-off problem. I'll earmark these with a leading
'HC' string and then the name of the object and
method to indicate that that particular output is
hard-coded, and where it's coming from.

goApp.debugox('HC frmCustAnalysis.tally()',;
 'Analyzing Account Number:', lcNoAccount,;
 ' UserID', lcIDuser, ':')

Lesson: Provide a debugging scaffold to help
the development team get used to what happens
when, and the interactions of various pieces of the
system.

Peopleware
Finally, a reminder that by far, the majority of
problems we face aren't technical issues, they're
people issues. Our customers have their own
needs and requirements, and they don't always
match with ours. Here are a couple of ideas to
help align theirs and ours when they get out of
sync.

Rules Are Meant To Be Broken
I've only done a couple of completely new

systems in the last five years, the rest have been
extensions, upgrades or conversions. A fairly
common scenario is where the customer,
comfortable with the way they've done things,
resists development processes that you use in
your projects, such as formal issue tracking,
version control, or parallel testing.

There seems to be no way to uniformly
categorize the miscreants; I've had IT departments
go along with new procedures because they see
the value; they just hadn't gotten around to
implementing themselves. At the same time, I've
had other development staffs resist mightily,
which amused me, because they were the first
ones to complain when their users didn't follow
the rules.

Bug tracking is the most critical, it seems to
me, because it directly affects the quality of the
end product. Losing track of open issues and not
having a record of fixes is a sure way to keep lots
of bugs lurking in the product.

I've had any number of customers try to avoid
the formal bug tracking software, instead just
calling or emailing with a bug request. I feel the
optimal solution to a situation like this is one
inspired by my kids, where behavior modification
is best accomplished by implementing logical
consequences (If you don't put your bike away, I'll
put it away for you, and I'll lock it up, and you
won't have it available when you want to use it
next.)

So take the example of when a user won't
enter a bug report. Their rationale is that they find
it faster to email or call. However, the reason for
the bug tracking system is to provide a single
centralized location where issues can be
completely entered, tracked, prioritized, and
closed. Furthermore, it can be researched if that or
a similar issue comes up again. The second reason
is that when the system isn't used, pieces of data
are forgotten to be noted (such as priority), so the
form acts as a checklist of info to be collected.

So in this example, where they won't enter a
bug report, I'll make sure that the logical
consequences of said action (or inaction) take
effect. When they ask about the status of an issue,
I'll look it up in the system. When it's not there,
it'll eventually come out that they didn't enter it
into the system, but emailed it to me, or called me.
Then I'll explain that "well, it must be around here
somewhere, I'll have to look for it...." After not
being able to find it a few times, they'll generally
get the idea.

Lesson: It's not the process, stupid. Oh, wait,
yes, it is.

See What You Made Me Do?
I've told the story many a time about the best

bug report I've ever seen. It went like this:
"Tried to add record without pressing Add.

Result: Record not added." Ah, yes, that was a
surprise, wasn't it?

Fortunately, most of us learned long ago that
submitting a bug report that goes like this:

Title: Cart ID problem
Steps to Reproduce:
1. Edit an Inmate
2. Add a new cart
3. Save
4. See what happens?

is a bad idea. The reason is that what happens
for me may not be what happens for you. When I
do it, I may see the Cart ID stay static, or it may
disappear, or it may change to the wrong value.
(Even more fundamentally, this assumes that I
know what's supposed to happen to the cart ID
when a new cart is added in the first place. I've
had more than one customer tell me, “You don't
have to understand what the system does, just
make the code work.”)

When you do it, something else may happen.
You can't see what's happening on my screen, and
all sorts of circumstances may prevent my system
working the same as yours.

Thus, this is much preferred:

Steps to Reproduce:
1. Navigate to Inmate #200
2. Click Edit button
3. Click the [+] button next to the cart
listbox to add a new cart
4. The defaults of a blank description, qty 1,
and price 0.00 display.
5. Select 'deck of cards'
6. The price changes to 0.79.
7. Click Save button

What happened:
8. The cart listbox display the new row (deck
of cards) but the Cart ID shows '00000'.

Expected:
The Cart ID should be the next ID from
the SYSTEMKEY table.

So far, so good. What happens when a
customer refuses to follow the instructions, and
insists on delivering incomplete 'Steps to
Reproduce', 'What Happened' and 'Expected'
information? It's tempting to get emotional or
belligerent (who, me?) I've had more than one
customer insist, "It takes too long to enter all that
information. Can't you just figure it out?"

Instead, the very best solution I've ever heard
is Tamar Granor's even-keeled reply, "I'm going to
need more information before I can help you.",
explain what the missing data is, and leave it at
that. Regardless of how many times it takes, keep
nudging the customer to do the right thing.
Eventually, they'll learn that it'll take less time if
they do it right the first time.

Or you'll get fired, which will likely be a
blessing in disguise. Do you really want to work
with a customer who doesn't want to cooperate?

Although once in a while, you may end up
working with someone even more stubborn. On
one project, my contact never did accept that fact
that writing out the information completely the

first time would ultimately be more efficient. They
kept thinking that the total time they spent would
be less if they wrote all bug reports incompletely,
gambling that I'd be able to figure out some
without coming back to them. The time they
saved would be greater than the extra time they
spent when I kept coming back with requests for
more information. Of course, the two year project
took almost four to complete, but they were used
to that.

Lesson: You don't have to be married to
someone in order to not be able to read their
mind.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Lessons From A VFP Conversion Gone Bad - II
	Warming Up – Tales From The Dark Side
	I Don't Think That Word Means What You Think It Means
	Nor Do I Think That Word Does What You Think It Does
	I STILL Don't Think That Word Does What You Think It Does
	PPPPPP
	Variable Scoping Is Fun, Fun, Fun
	Well, For Instance...
	Belts and Suspenders
	The Hard-Coded Developer Login

	Wisdom – Wish I'd Know That When...
	Standards Are Good - That's Why We Have So Many Of Them
	You Can't Know It All
	You've Never Seen It All

	Customers Say The Darndest Things
	There Are So Many!!!
	Something Old, Something New, Something Browsey
	Do What I Meant, Not What I Said
	Do What I Meant, Not What I Said, Redux
	You Show Me Yours

	Advice – The Start of a Checklist
	Globals Everywhere!
	The Missing Procedure File
	Scaffolding

	Peopleware
	Rules Are Meant To Be Broken
	See What You Made Me Do?

	Author Profile

