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Even if you've been living under a rock for the last
five years, you're aware that data privacy is one of
The Big Big Things these days. You can't go buy a
soda at Walgreens without having to sign a half
dozen forms acknowledging what they'll do with
your data and how they'll keep it safe and only
distribute it to a third party in return for a suitcase
full of small bills and the express written consent
of the National Football League. 

You're going to need to keep your customer's data
safe, but it's difficult to test an application without
data  that  fairly  represents  the  real  world.  One
solution is to mask a live data set. Doing so has
more complexities than may be initially evident,
so  this  article  first  discusses  the  business  logic
behind  such  an  anonymizing  program,  and
second,  describes  a  simple  program to  perform
the actual work.

So  it's  likely  that  you've  had  to  work  with
some sort of confidential data for your customers
or users, and you've had to sign a bunch of NDAs
and data confidentiality agreements over the last
few years. Even then, you don't really want to be
messing  with  live  data  that  contains  real  social
security  numbers,  names and addresses,  and so
on. 

At the same time, it's unusual for a customer
to  provide  a  cleansed  data  set  with  made  up
information that still makes sense, and illustrates
the variety of relations and conditions that their
live data provides. For any data model past the
trivial,  it's  almost  impossible  to  create  a  robust
enough  data  set  that's  consistent  and  still
completely anonymous. 

Back in the olden days, I had a default set of
test  data  for  common  tables  like  customers,
orders,  machines,  dependents,  and  payments.  I
could mock up a simple data set that represented
their needs with an hour or two of work, and that
was sufficient.  The days where systems are that
simple  are  long  gone,  though,  and  I've  found
myself exclusively relying on the customer's data
set.  Yet  I  don't  want  to  have  their  confidential
data on my system anymore than they do, so I've
taken  to  anonymizing  it  and  then  sending  the
results  to  them  with  beta  versions  of  the

application, so that we can see the same results,
yet with safe data.

So  the  problem  is  we  need  a  data  set  that
accurately mirrors the customer's real data, yet we
don't  want  real  values  in  there.  The  goal  is  to
wave a magic wand over their live data, turning,
for  example,  live  SSNs  into  fake  ones,  actual
addresses into make-believe, that sort of thing. 

Problems, Problems
At first blush, it would seem trivial to do so.

Just  do  a  search  and  destroy  on  any  field  that
needs  to  be  anonymized.  Numbers  can  be
randomized, strings like names can be substituted
from a table of source replacements. Not so fast. 

The trouble we're going to face is consistency
over  a  non-normalized  data  set.  In  a  perfect
world, your data would be perfectly normalized,
'all the data, just the data, and only the data'. But
the world isn't perfect. Just look at the Packers a
few years  ago,  16-0  and then they lose  to  New
York. 

So it's very likely you're going to have a table
that is at least in part denormalized. It might looks
something like this:

SSN Name Code

345-77-1800 Al Anxious YZ

345-77-1800 Al Anxious N5

502-16-3451 Barbara Boisterous 01

502-16-3451 Barbara Boisterous 77

502-16-3451 Barbara Boisterous 03

691-35-7012 Carl Calamity YZ

822-80-0062 Dave Dashing 01

822-80-0062   Dave Dashing 04

where the third column is a product code or
plan number of something. For whatever reason,
the application wasn't set up to pull the SSN and
Name into a separate table and provide a foreign
key to that table. 



At first blush, one would think one could just
rip through each field like so:

replace SSN with 
padr(alltrim(str(int(rand()*1000))),3,'0')+'-'
padl(alltrim(str(int(rand()*100))),2,'0')+'-' 
padl(alltrim(str(int(rand()*10000))),4,'0') 

However,  if  you did so,  you'd  get  different
SSNs  for  each  instance  of  the  same  person.
Similarly,  one  would  be  tempted  to  handle  a
name or address with a lookup replacement, like
this:

replace fullname with nameLookup(fullname)

where the nameLookup() function grabbed a
random  row  from  a  table  of  dummy  names,
perhaps using the original name as a seed, or as a
check  to  make  sure  the  same  name  wasn't
accidentally returned. If done randomly, and the
dummy name table was large enough, each row
representing  Al  Anxious  could  be  filled  with  a
different name. Again, the problem is that every
instance of Al should be replaced with the same
value.

Clearly, using random replacements is just as
useful  as  having  those  million  monkeys  at  a
million typewriters do your data entry for you.

Not All Is Lost
Fortunately, I've found that it's generally just

one  or  a  couple  of  tables  that  need  to  be
anonymized,  as  there  aren't  that  many  types  of
sensitive  data  to  be  dealt  with.  For  example,  if
you've got  a  table  listing  payments  and credits,
with foreign keys pointing towards the person or
organization  attached  to  those  transactions,  the
transactions  themselves  can  usually  be  kept
whole. After all, what's anyone going to do with a
table that looks like this?

PK Date Amount

9e8973a414803b84 1/1/2005 197.16

b998ae11577daa37 1/1/2005 202.00

8bsh4-530146394z 1/1/2005 88.18

06538f49834e1ae6 1/1/2005 155.46

So that means we'll  likely only have to deal
with a few tables at most, and likely only a few
columns per table.

And the job gets even easier. I've alluded to
the use of the rand() function as a potential tool
for randomizing data, and I know there are some
of  you  who  are  arguing  that  rand()  isn't  truly
random. Yes, you're right, but that's ok, we don't

need a  truly  random generator,  or  even a  good
one.

When you use VFP's rand() repeatedly, you'll
get  the  same  results  each  time.  (I've  started  up
VFP and typed 

? rand()

in the Command Window every day for the
last week, and always get '0.85' as the first result.

As  a  result,  given  the  results,  you  could
theoretically work backwards and get the original
values. However, you can provide rand() a seed
value that changes the results. By using an ever-
changing seed,  it  becomes impossible  to  reverse
engineer  the  results  unless  you  know  how  the
seed was generated. 

Now,  on  top  of  this,  by  using  the  random
value generated to pick a value out of a large table
filled  with  random  values,  the  work  needed to
produce the original values becomes impractical
for data less valuable than military secrets or the
recipe for fast food chicken. 

Finally, the purpose of this anonymizer is to
obfuscate  the  data  such  that  if  a  miscreant  gets
ahold of our data, they can't do anything useful
with it. That's the ONLY purpose. In other words,
we don't ever have to turn the garbled data back
into  their  real  values.  The  only  thing  to  worry
about  is  that  another  user  shouldn't  be  able  to
look at data and reverse engineer

When  you  need  to  be  able  to  get  back  to
where  you  came  from,  such  as  decrypting  a
password, the algorithm has to go both ways, and
so  you  need  to  be  able  to  track  how  the
randomness was handled. When you encrypt data
with the intention of decrypting it later, either you
use  a  mechanism  that  contains  the  decnryption
method  as  well,  or  you  include  info  in  the
encrypted  data  itself  that  allows  itself  to  be
unwound. Here, we don't have to do either, since
we're never going to decrypt the data. So we can
use our everchanging seed and random values in
a table mechanisms,  because,  unlike home, we'll
never want to go back.

Types of Data To Anonymize
So let's take a look at the types of data that

need to be anonymized. We can group them into
three types.

ID Numbers
The  first  type  of  data  is  ID  numbers,  like

SSNs, account numbers, and the like. They may be
numeric,  alphanumeric,  or  even  include  special
characters  like  hyphens  and  periods.  I  ran  into
one company where somebody decided that their



account numbers had to be randomly generated,
like passwords, and thus looked like this:

33x-z5LTQ$7teM@@

Well,  whatever  floats  your  boat.  But  some
people are just too clever for their own good. 

Anyway,  I  digress.  ID  numbers  can  be
anonymized via a one-off cipher, replacing either
a  character  or  a  group  of  characters  with  a
replacement  that's  generated  via  VFP's  rand()
function. 

Dates
Dates, particularly birth dates,  often need to

be  anonymized.  However,  they  can't  simply  be
randomized, because often the resulting date still
needs to make sense in the system. For example,
suppose  you  changed  a  birth  date  from
12/14/1954  to  6/17/1999.  If  the  date  of  death
associated in that record was 6/12/1999, that new
random  DOB  is  going  to  gum  up  all  sorts  of
business logic. 

So we'll need to add some intelligence to the
anonymizing of a date, so that it get converted to
a  date  that  still  makes  contextual  sense.  The
easiest way to to do is to pass the date plus two
more  parameters,  serving  as  the  minimum  and
maximum  allowable  values,  to  the  date
anonymizing  function.  This  could  be  done  via
date literals, like so:

ldDateNew = anonDate(ldDateOrig, ;
  ldDateMin, ldDateMax)

where you'd define the dates like so:

ldDateMin = {^2000/1/1}
ldDateMax = {^2000/12/31}

or with numeric extents, like so:

ldDateNew = anonDate(ldDateOrig, ;
  lnDateNeg, lnDatePos)

where you'd initialize the extents like so:

lnDateNeg = 90
lnDatePos = 90

Names 
Next to ID numbers, names are the next most

important entity to deal with. 
For  sure,  those  named  John  Smith,  Juan

Carlos, Zhang Wei, or Muhammed Ahmed face a
fair  amount anonymity already,  but  what  about
those with obscure names due to family heritage
or unusual nicknames? Let's protect them, too.

Since  we're  dealing  with  non-random  text
strings, we can't just make up a random string of
alphabetical  characters  to  replace  the  original

names. Instead, we'll use a table of thousands of
first  names  and  last  names  (separate  lists)  and
pick a random name out  of  the table.  We'll  use
rand()  to  determine  which  row  out  of  those
thousands to pull out of the table. 

To keep things simple, we'll put both the first
and  last  names  in  the  same  table,  and  use  a
second column to identify what type of name the
value is, like so:

cType cData

FN Al

FN Barb

FN Carl

FN Donna

LN Chang

LN Johnson

LN Wilson

LN Young

Then the anonymizing function call will look
something like this:

lcFNnew = anonString(lcFNorig, 'FN')
lcLNnew = anonString(lcLNorig, 'LN')

The original name is passed to the function so
that the function can ensure the same value isn't
passed  back.  The  type  of  data  is  passed  as  the
second parameter, so that the lookup table can be
filtered for the appropriate rows. 

Street Addresses 
Almost as important as names are addresses.

By  themselves,  addresses  don't  always  provide
much personally identifiable  information,  unless
the address is extremely unique. 3701 North 44th
Street (without a city) is pretty vague. I just made
that  up  as  I  was  typing  the  first  draft  of  this
article, then did a Web search on it, and got about
312,000 hits, in cities from Albequerque to Zagreb.
1 Knightsbridge Church Drive Northwest, on the
other hand, even without a city included, points
very specifically to one location.

Additionally,  the  occupants  at  an  address
change  from  time  to  time,  so,  again,  are  not
necessarily as personally identifiable as numbers
or names. 

Still,  if  one  has  the  means,  why  not
anonymize them as well? Except for applications
that use street addresses for specific uses (such as
package  delivery),  100  Elm  Street  could  be



replaced by 200 Main Place without any adverse
consequences.

Addresses,  then,  will  be  anonymized  using
the same table and function as people's names:

lcAddressNew = anonString(lcAddressOrig, ;
  'Addr')

Cities
Cities,  again,  can  be  handled  in  much  the

same way as people's names and street addresses. 

lcCityNew = anonString(lcCityOrig, 'City')

A sample table with a hundred sample first
names,  last  names,  street  addresses  and  cities,
anonstrings.dbf,  is  provided  in  the  subscriber
downloads for this article. 

Additional City Restrictions
In some datasets,  there might be restrictions

for  the  City/State/Zip  range.  For  example,  I
wrote  one  of  those  'calculate  the  closest  store'
programs back in the 80s (back when longitudes
and latitudes  were hard to figure out.)  The test
data  needed  to  be  relatively  appropriate;  if  the
user was in Atlanta, they weren't likely going to
be searching for a store in Montana. 

Another example of location data needing to
be geographically relevant is when doing queries
based on location, such as population counts per
MMSA  or  metro  regions.  (My SQLite  articles  a
couple of years ago did just that.)

If  these  or  similar  constraints  exist  in  your
system, you could pass an additional parameter to
the anonString() function that will  serve to limit
how far afield the anonymizer will be allowed to
wander. 

Putting the Data Types Together
So  we've  identified  the  types  of  data  to

anonymize,  and  we've  got  functions  to  call  for
each of them. We'll create a list of the fields in the
table that we want to process,  and map them to
one of those data types.  Then we'll  simply pass
the real value to the appropriate function and get
an  anonymized  value  in  return.  These  three
functions  are  anonID(),  anonString(),  and
anonDate().

The mapping would look something like this:

field type

ssn id

fname fn

lname ln

addr1 addr

city city

dob date

dod date

Not. Done. Yet.
In  the  excitement  of  seeing,  you  may  have

forgotten that  there's  more to this problem than
simply doing a 

replace cCity with anonString(lcCityOrig, ;
  'City') all

call. We can't treat each individual row in the
table  as  independent  from  every  other  row.
Multiple rows may contain the same data, and we
have to anonymize all of those rows in the same
way,  else  the  data  threatens  to  become
meaningless. 

Sample Data
A  table  of  sample  data  to  anonymize,

zData.dbf,  is  included  in  the  subscriber
downloads. It has a variety of columns, some to
be  anonymized  and  some  to  be  ignored.  For
demonstration sake, I've included mirror columns
for the fields to be anonymized, so that running
the anonymizing routines on the fields won't alter
the original values. The mirror columns bear the
same names, but with a trailing underscore. Thus,
the sample programs won't

replace cCity with anonString(lcCityOrig, ;
  'City')

but, rather

replace cCity_ with anonString(lcCityOrig, ;
  'City')

so  that  the  routines  can  be  rerun  without
concern.

Handling Data In Groups
I've  mentioned  earlier  the  need to  map  the

fields in the table to be anonymized and the type
of data. We'll need to include one more file in the
mapping,  the  purpose  of  which  is  to  identify  a
unique  key  for  groups  of  rows  that  should  be
anonymized together. 



The  identification  of  this  key  varies  in
complexity,  depending  on  which  field  we're
processing. For example, let's look at date of birth.
We can't just throw a random date into every row,
because  multiple  rows  may  apply  to  the  same
entity, like so:

Name DOB Benefit

Al Anxious 1/23/1978 EO7

Al Anxious 1/23/1978 ELA

Al Anxious 1/23/1978 GF12

Simply  replacing  every  row with  a  random
date value would produce results like this:

Name DOB Benefit

Al Anxious 12/07/1977 EO7

Al Anxious 10/10/1977 ELA

Al Anxious 2/29/1980 GF12

which  is  completely  wrong.  We  need  to
substitute the same anonymized value in each of
Al  Anxious's  rows.  However,  we  can't  blindly
substitute  the  same  anonymized  date  value  for
every row that contains 1/23/1978, since Al may
share his birthday with other people. So how do
we determine just those DOBs that belong to Al?
We could use his name, but there may be others
with  his  name,  so  it's  not  a  unique  key.
Furthermore,  even  if  the  combination  of
first/middle  and  last  were  guaranteed  to  be
unique, why use three fields if there's a simpler
way. In this example, the SSN would be unique
and simpler to use. 

There  are  other  cases,  however,  where  we
may not be able to use a single field as the unique
key. For example, the SSN itself can't be used as
the PK when doing updates on it;  we'll  need to
use a different field (or set of fields) to identify all
records for a single SSN. Those of you who work
with medical data likely know that full name plus
DOB is often used as a unique identifier. 

Thus,  the  mapping  for  fields  to  anonymize
looks like this:

Field Type PK

ssn id firstname+lastname+dtos(dob)

firstname fn ssn

lastname ln ssn

address addr firstname+lastname+ssn

city city ssn

dob date ssn

Processing the Data Table
We now have all of the pieces needed to begin

processing  our  table  of  data  to  be  anonymized.
The we we're going to do so is spin through our
array of fields to anonymize. For each field, we'll
grab  the  unique  keys  to  create  the  groups  of
records to process. For each group (such as all of
Al Anxious's records), we'll anonymize the values
in  that  field  by calling  the  appropriate  function
and stuffing the return value in the table.

Here's the start of creating the field mapping
array:

dimension laFieldTypeKey[9,3]
laFieldTypeKey[1,1] = 'ssn'
laFieldTypeKey[1,2] = 'id'
laFieldTypeKey[1,3] = ;
  'firstname+lastname+dtos(dob)'
laFieldTypeKey[2,1] = 'lastname'
laFieldTypeKey[2,2] = 'ln'
laFieldTypeKey[2,3] = 'ssn'

Next, spin through this array of fields.

for li = 1 to alen(laFieldTypeKey,1)

Find all unique combinations of ssn, using the
name+dob  expression  as  the  unique  key.  Since
we're  going  to  be  passing  a  variety  of  field
expressions  through  this  routine,  we'll  need  to
provide  an  alias  for  the  key  expression  in  the
SELECT.

lcCmd = "select distinct " ;
  + laFieldTypeKey[li,3] + " as pk, " ;
  + laFieldTypeKey[li,1] + " from " ;
  + lcNaDBFtoProcess + " order by " ;
  + laFieldTypeKey[li,1] ;
  + " into cursor csrX"
&lcCmd

This cursor contains the PK and the value that
will  be  anonymized  for  that  PK.  Then  spin
through the cursor. For each row, get anonymized
values for each value by calling the function for
that type of data. First, we'll test to see if there is a
value, as things tend to blow up when trying to
anonymize a blank value. 



if empty(&laFieldTypeKey[li,1]) 
loop
endif

We'll  need  to  evaluate  the  field  expression
contained in the array. Along the way, we'll create
variables for the other parts of the expression to
update for ease of use. 

luValToAnon = &laFieldTypeKey[li,1]
luValToKey = pk 
luValType = laFieldTypeKey[li,2]

In  this  example,  we'll  determine  which
function to call by the field name for simplicity's
sake, but this could be generalized easily enough.

case inlist(upper(laFieldTypeKey[li,1]), ;
  'SSN') 

Now  that  we  know  to  call  the  anonID()
function,  we execute  the  first  part  of  the  magic
happens  here,  passing  the  value  to  anonymize
and the type of data we're passing.

luNewVal = l_anonID(luValToAnon, ;
  laFieldTypeKey[li,2])

(The function has a 'l_'  prefix,  since  each of
the  functions  is  contained  in  the  main
anonymizing program.) Now equipped with the
anonymized  value,  it's  time  to  update  the
appropriate rows in the data table.

lcCmd = "update " + lcNaDBFtoProcess ;
 + " set " + (laFieldTypeKey[li,1]) + '_'  ;
 + " = [" + allt(transform(luNewVal)) + "]" ;
 + " where " + laFieldTypeKey[li,1] + " = [" ;
 + alltrim(transform(luValToAnon)) + "]" ;
 + " and " + laFieldTypeKey[li,3] + " = [" ;
 + transform(luValToKey) + "]"
&lcCmd

Note  the  inclusion  of  an  underscore  to  the
name of  the  field  to update  (second line  of  the
preceeding code snippet), and the use of brackets
as  delimiters,  since  there  are  likely  going  to  be
values with apostrophes in them.

This  anonymizing  program,  anonAtable.prg,
is included in the subscriber  downloads for this
article. 

A Closer Look At the Anonymizer
Functions

I've  talked  about  the  various  anonymizer
functions, anonID(), anonString() and anonDate()
in general terms, but each uses specific algorithms
to  produce  an  anonymized  value.  Let's  take  a
closer look at each.

anonID() 
The purpose  behind anonID()  is  to  return a

random string of  characters  that  match  the  size

and  format  of  the  string  passed  in.  The  most
common  example  would  be  a  social  security
number,  where  '123-45-6789'  passed  in  would
result in a random return value such as '738-49-
2361'. 

In this version,  the input string is examined
for the number of hyphen characters, and is then
broken into chunks. So the sample SSN would be
broken into three chunks, 123, 45, and 6789. Each
chunk would then be randomized, using a system
clock  value  as  the  seed,  and  the  three  random
chunks assembled and returned as a single string.

* determine how many chunks
liNumChunks = occurs('-',lcStrOrig)+1

* add a hyphen to the end so that every chunk
* is of the form NNNN- (a trailing hyphen)
lcStrToProcess = alltrim(lcStrOrig) + '-'

for li = 1 to liNumChunks
* break out a chunk by grabbing the leftmost
* characters until reaching a hyphen
lcThisChunk = iif('-'$lcStrToProcess, ;
  left(lcStrToProcess, ;
  at('-',lcStrToProcess)-1),;
  lcStrToProcess)
* remove this chunk from the string to process
lcStrToProcess = strtran(lcStrToProcess, ;
  lcThisChunk+'-', '')
* create a random string out of this chunk
lcNewChunk = ;
  l_rand(lcThisChunk,len(lcThisChunk))
* add the new chunk to the existing string to
* be returned
lcStrNew = lcStrNew + ;
  iif(!empty(lcStrNew),'-','') + lcNewChunk

anonString() 
The purpose behind anonString() is to pass in

a string,  such as a first  name or  a city,  and get
back a different string. This function doesn't pass
back a random character string, for after all, who
wants to see test data littered with gobbledegook
like this:

First Name Last Name

KaFJd8sRlsk UjflszIIefu

Instead,  we  want  random but  valid  strings.
Send in 'Steve' and get back 'Gabriel' in return. 

This  function  takes  both  the  original  string
and  the  type  of  string  (first  name,  last  name,
address,  or  city)  as  parameters,  and  returns  a
value  from  the  ANONSTRINGS  lookup  table.
ANONSTRINGS has the following structure. 



iRecno cType cData

1 FN Allan

2 FN Alvin

3 ...

3404 LN Armstrong

3405 ..

7726 ADDR All Saints Drive

7727 ..

10558 CITY Albuquerque

10559 ..

The  first  thing  to  do,  then,  is  to  determine
how many potential values we're going to have to
pick from, since that number will determine how
we calculate  the  random number  value.  (In  the
data set included with this article,  I've supplied
just 100 values of each type, but out in the wild,
my table includes over between 5,000 and 15,000
values of each type.)

I've actually done this in the calling program,
like so:

dimension paHowMany[4,1]
select count(*) from ANONSTRINGS where ;
  upper(allt(cType)) == 'FN' into array laX
paHowMany[1,1] = laX[1]
select count(*) from ANONSTRINGS where ;
  upper(allt(cType)) == 'LN' into array laX
paHowMany[2,1] = laX[1]
select count(*) from ANONSTRINGS where ;
  upper(allt(cType)) == 'ADDR' into array laX
paHowMany[3,1] = laX[1]
select count(*) from ANONSTRINGS where ;
  upper(allt(cType)) == 'CITY' into array laX
paHowMany[4,1] = laX[1]

So  then  in  the  function,  we  just  grab  the
appropriate  value based  on what  type of  string
was passed in.

case upper(alltrim(lcType)) = 'FN'
  liHowMany = paHowMany[1,1]
case upper(alltrim(lcType)) = 'LN'
  liHowMany = paHowMany[2,1]
case upper(alltrim(lcType)) = 'ADDR'
  liHowMany = paHowMany[3,1]
case upper(alltrim(lcType)) = 'CITY'
  liHowMany = paHowMany[4,1]

Now  that  we  know  how  many  potential
values are in the lookup table, we can calculate a
random  record  number  and  frame  it  to  lie
between 1 and the number of values.

liRecnoToPull = mod(int(rand()*10000), ;
  liHowMany)

So, for example, if there were 7820 first names
in the ANONSTRINGS table, this would produce
a random value between 1 and 7820. 

Armed with this number, we'll grab the value
from the lookup table.

select cData from ANONSTRINGS ;
where uppe(allt(cType))==uppe(allt(lcType)) ;
and uppe(allt(cdata))<>uppe(allt(lcStrOrig)) ;
and irecno = liRecnoToPull ;
into array laStrNew

A couple of notes about the SELECT. First, the
lookup table actually has a column, iRecno, that
contains  a fake record number so that  we don't
have to later  rework this  logic  if  we decided to
move to a non-record number-aware data source.

Second,  the  SELECT  makes  sure  that  we're
not grabbing the same value that we're passing in.
Some  theorists  may  argue  that  doing  actually
reduces  the  randomness  of  the  function,  but,
frankly, out of a set of five or ten thousand values,
that's probably not going to help someone break
the code. Meanwhile, it's handy to know in testing
that the return value will NOT be the same value
that we sent in.

anonDate()
The  purpose  behind  this  function  is  to

obscure  dates  that  could  be  used  for  nefarious
purposes,  such  as  birth  and  anniversary  dates.
(Indeed, some folks suggest guarding your online
privacy by providing a fake date of birth so that in
the  event  of  a  breach,  this  piece  of  critical
information  isn't  left  out  there,  swinging  in  the
wind.) 

However,  as  mentioned,  making  up  a
completely random birth date could well impede
the testing and use of the system the data is being
used in. Birth dates that are set into the future, or
after  the  date  of  death  of  the  individual  in
question,  will  likely  screw  up  something
eventually. 

The function call, 

anonDate(luValToAnon)

can  pass  two  optional  parameters  that
indicate the earliest and latest values that the new
random  date  must  lie  between.  Without  those
parameters  provided,  the  function  uses  hard-
coded values of 6 months in both directions.

* provide hard-coded bounds
if pcount() < 2
luMin = 180
luMax = 180
endif

Conveniently,  the  parameters  can  either  be
actual dates or can be a number of days – the data



type  of  the  parameters  will  be  tested  in  the
function. 

* luMin and luMax might be dates or # of dates
if vartype(luMin)='D' and vartype(luMax)='D'
  ldDateMin = luMin
  ldDateMax = luMax
else
  ldDateMin = ldDateOrig - luMin
  ldDateMax = ldDateOrig + luMax
endif

Now  that  we  have  the  bounds  established,
generating new values is simple.

ldDateNew = ldDateMin ;
  + int(mod(int(rand()*10000000), ;
  ldDateMax-ldDateMin))

As  a  catch,  sort  of  a  belt  and  suspenders
device, if the new date happens to be the same as
the original date, just run the function again. 

if ldDateOrig = ldDateNew
  ldDateNew = ldDateMin ;
    + int(mod(int(rand()*10000000), ;
    ldDateMax-ldDateMin))
endif

Purists  may  choose  to  turn  this  into  a  full
scale 'do while not' construct.

Enhancements
As with any program that you've worked on

for a while, this one has the potential for several
enhancements. 

anonID() 
An original design parameter was to handle

alphabetic strings as well as numerics, so that an
ID of the form 

123ABC

could  be  anonymized.  As  I've  worked with
this  function,  I  never  found  the  need  to
anonymize an alphanumeric string, so that piece
never  got  written.  It  wouldn't  be  difficult,  and
could  conceivably  be  useful  in  other
environments, so it's the first ER on the list.

The  current  function  has  extremely  limited
formatting,  expecting  just  numbers  from  0  to  9
and possibly hyphens. It's conceivable that other
separating characters could be passed in, such as
periods, underscores, or octothorpes. On the other
hand, those characters might be part of the data I
the  string,  so  it  wouldn't  be  wise  to  simply
assume  they're  separators,  and  then  hard-code
traps for them. 

A better way would be to send a second string
into  the  function  that  defined  a  character  map,
much like Fox's format strings.

'9'  would  represent  a  number  to  be
randomized,  'A'  would  represent  an  alphabetic
character to be randomized, an X would represent
an alphanumeric character to be randomized, and
a hyphen represents a separator that is not to be
randomized.  Here  are  some  sample  character
mappings: 

Sample Map Meaning

999-99-9999 3  numeric,  a  separator,  2  numeric,  a
separator, 4 numeric

AAA999 3 alphabetic, 3 numeric

XXXX-99 4 alphanumeric, a separator, 2 numeric.

The third possible enhancement might be to
pass  a  seed  to  the  randomizing  function,  to
further add to the entropy of the data.

anonString() 
For addresses, add a number and direction to

the address.
For cities, make the city closer to the target, if

needed to make subsequent calculations with the
data relevant. If the system is doing that 'closest
store to you' process, it'd be a pain to have your
carefully assembled data set of local stores to be
suddenly scattered across 20 time zones.

anonDate()
Could fine tune the range of dates, say, to be

within  the  same  year.  An insurance  policy  that
was  taken  out  in  one  year  and  terminated  in
another might need new dates that had the same
year as the originals.

Source Code Notes
anonStrings.dbf  –  master  lookup  table  that

contains  a  hundred  random  first  names,  last
names, addresses, and cities.

zdata.dbf – sample table of names, addresses,
IDs, dates, and non-anonymizing data to practice
on.

anonAtable.prg  –  the  anonymizing  program
and subroutines.
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