
Anonymizing Your Data
Whil Hentzen

Even if you've been living under a rock for the last
five years, you're aware that data privacy is one of
The Big Big Things these days. You can't go buy a
soda at Walgreens without having to sign a half
dozen forms acknowledging what they'll do with
your data and how they'll keep it safe and only
distribute it to a third party in return for a suitcase
full of small bills and the express written consent
of the National Football League.

You're going to need to keep your customer's data
safe, but it's difficult to test an application without
data that fairly represents the real world. One
solution is to mask a live data set. Doing so has
more complexities than may be initially evident,
so this article first discusses the business logic
behind such an anonymizing program, and
second, describes a simple program to perform
the actual work.

So it's likely that you've had to work with
some sort of confidential data for your customers
or users, and you've had to sign a bunch of NDAs
and data confidentiality agreements over the last
few years. Even then, you don't really want to be
messing with live data that contains real social
security numbers, names and addresses, and so
on.

At the same time, it's unusual for a customer
to provide a cleansed data set with made up
information that still makes sense, and illustrates
the variety of relations and conditions that their
live data provides. For any data model past the
trivial, it's almost impossible to create a robust
enough data set that's consistent and still
completely anonymous.

Back in the olden days, I had a default set of
test data for common tables like customers,
orders, machines, dependents, and payments. I
could mock up a simple data set that represented
their needs with an hour or two of work, and that
was sufficient. The days where systems are that
simple are long gone, though, and I've found
myself exclusively relying on the customer's data
set. Yet I don't want to have their confidential
data on my system anymore than they do, so I've
taken to anonymizing it and then sending the
results to them with beta versions of the

application, so that we can see the same results,
yet with safe data.

So the problem is we need a data set that
accurately mirrors the customer's real data, yet we
don't want real values in there. The goal is to
wave a magic wand over their live data, turning,
for example, live SSNs into fake ones, actual
addresses into make-believe, that sort of thing.

Problems, Problems
At first blush, it would seem trivial to do so.

Just do a search and destroy on any field that
needs to be anonymized. Numbers can be
randomized, strings like names can be substituted
from a table of source replacements. Not so fast.

The trouble we're going to face is consistency
over a non-normalized data set. In a perfect
world, your data would be perfectly normalized,
'all the data, just the data, and only the data'. But
the world isn't perfect. Just look at the Packers a
few years ago, 16-0 and then they lose to New
York.

So it's very likely you're going to have a table
that is at least in part denormalized. It might looks
something like this:

SSN Name Code

345-77-1800 Al Anxious YZ

345-77-1800 Al Anxious N5

502-16-3451 Barbara Boisterous 01

502-16-3451 Barbara Boisterous 77

502-16-3451 Barbara Boisterous 03

691-35-7012 Carl Calamity YZ

822-80-0062 Dave Dashing 01

822-80-0062 Dave Dashing 04

where the third column is a product code or
plan number of something. For whatever reason,
the application wasn't set up to pull the SSN and
Name into a separate table and provide a foreign
key to that table.

At first blush, one would think one could just
rip through each field like so:

replace SSN with
padr(alltrim(str(int(rand()*1000))),3,'0')+'-'
padl(alltrim(str(int(rand()*100))),2,'0')+'-'
padl(alltrim(str(int(rand()*10000))),4,'0')

However, if you did so, you'd get different
SSNs for each instance of the same person.
Similarly, one would be tempted to handle a
name or address with a lookup replacement, like
this:

replace fullname with nameLookup(fullname)

where the nameLookup() function grabbed a
random row from a table of dummy names,
perhaps using the original name as a seed, or as a
check to make sure the same name wasn't
accidentally returned. If done randomly, and the
dummy name table was large enough, each row
representing Al Anxious could be filled with a
different name. Again, the problem is that every
instance of Al should be replaced with the same
value.

Clearly, using random replacements is just as
useful as having those million monkeys at a
million typewriters do your data entry for you.

Not All Is Lost
Fortunately, I've found that it's generally just

one or a couple of tables that need to be
anonymized, as there aren't that many types of
sensitive data to be dealt with. For example, if
you've got a table listing payments and credits,
with foreign keys pointing towards the person or
organization attached to those transactions, the
transactions themselves can usually be kept
whole. After all, what's anyone going to do with a
table that looks like this?

PK Date Amount

9e8973a414803b84 1/1/2005 197.16

b998ae11577daa37 1/1/2005 202.00

8bsh4-530146394z 1/1/2005 88.18

06538f49834e1ae6 1/1/2005 155.46

So that means we'll likely only have to deal
with a few tables at most, and likely only a few
columns per table.

And the job gets even easier. I've alluded to
the use of the rand() function as a potential tool
for randomizing data, and I know there are some
of you who are arguing that rand() isn't truly
random. Yes, you're right, but that's ok, we don't

need a truly random generator, or even a good
one.

When you use VFP's rand() repeatedly, you'll
get the same results each time. (I've started up
VFP and typed

? rand()

in the Command Window every day for the
last week, and always get '0.85' as the first result.

As a result, given the results, you could
theoretically work backwards and get the original
values. However, you can provide rand() a seed
value that changes the results. By using an ever-
changing seed, it becomes impossible to reverse
engineer the results unless you know how the
seed was generated.

Now, on top of this, by using the random
value generated to pick a value out of a large table
filled with random values, the work needed to
produce the original values becomes impractical
for data less valuable than military secrets or the
recipe for fast food chicken.

Finally, the purpose of this anonymizer is to
obfuscate the data such that if a miscreant gets
ahold of our data, they can't do anything useful
with it. That's the ONLY purpose. In other words,
we don't ever have to turn the garbled data back
into their real values. The only thing to worry
about is that another user shouldn't be able to
look at data and reverse engineer

When you need to be able to get back to
where you came from, such as decrypting a
password, the algorithm has to go both ways, and
so you need to be able to track how the
randomness was handled. When you encrypt data
with the intention of decrypting it later, either you
use a mechanism that contains the decnryption
method as well, or you include info in the
encrypted data itself that allows itself to be
unwound. Here, we don't have to do either, since
we're never going to decrypt the data. So we can
use our everchanging seed and random values in
a table mechanisms, because, unlike home, we'll
never want to go back.

Types of Data To Anonymize
So let's take a look at the types of data that

need to be anonymized. We can group them into
three types.

ID Numbers
The first type of data is ID numbers, like

SSNs, account numbers, and the like. They may be
numeric, alphanumeric, or even include special
characters like hyphens and periods. I ran into
one company where somebody decided that their

account numbers had to be randomly generated,
like passwords, and thus looked like this:

33x-z5LTQ$7teM@@

Well, whatever floats your boat. But some
people are just too clever for their own good.

Anyway, I digress. ID numbers can be
anonymized via a one-off cipher, replacing either
a character or a group of characters with a
replacement that's generated via VFP's rand()
function.

Dates
Dates, particularly birth dates, often need to

be anonymized. However, they can't simply be
randomized, because often the resulting date still
needs to make sense in the system. For example,
suppose you changed a birth date from
12/14/1954 to 6/17/1999. If the date of death
associated in that record was 6/12/1999, that new
random DOB is going to gum up all sorts of
business logic.

So we'll need to add some intelligence to the
anonymizing of a date, so that it get converted to
a date that still makes contextual sense. The
easiest way to to do is to pass the date plus two
more parameters, serving as the minimum and
maximum allowable values, to the date
anonymizing function. This could be done via
date literals, like so:

ldDateNew = anonDate(ldDateOrig, ;
 ldDateMin, ldDateMax)

where you'd define the dates like so:

ldDateMin = {^2000/1/1}
ldDateMax = {^2000/12/31}

or with numeric extents, like so:

ldDateNew = anonDate(ldDateOrig, ;
 lnDateNeg, lnDatePos)

where you'd initialize the extents like so:

lnDateNeg = 90
lnDatePos = 90

Names
Next to ID numbers, names are the next most

important entity to deal with.
For sure, those named John Smith, Juan

Carlos, Zhang Wei, or Muhammed Ahmed face a
fair amount anonymity already, but what about
those with obscure names due to family heritage
or unusual nicknames? Let's protect them, too.

Since we're dealing with non-random text
strings, we can't just make up a random string of
alphabetical characters to replace the original

names. Instead, we'll use a table of thousands of
first names and last names (separate lists) and
pick a random name out of the table. We'll use
rand() to determine which row out of those
thousands to pull out of the table.

To keep things simple, we'll put both the first
and last names in the same table, and use a
second column to identify what type of name the
value is, like so:

cType cData

FN Al

FN Barb

FN Carl

FN Donna

LN Chang

LN Johnson

LN Wilson

LN Young

Then the anonymizing function call will look
something like this:

lcFNnew = anonString(lcFNorig, 'FN')
lcLNnew = anonString(lcLNorig, 'LN')

The original name is passed to the function so
that the function can ensure the same value isn't
passed back. The type of data is passed as the
second parameter, so that the lookup table can be
filtered for the appropriate rows.

Street Addresses
Almost as important as names are addresses.

By themselves, addresses don't always provide
much personally identifiable information, unless
the address is extremely unique. 3701 North 44th
Street (without a city) is pretty vague. I just made
that up as I was typing the first draft of this
article, then did a Web search on it, and got about
312,000 hits, in cities from Albequerque to Zagreb.
1 Knightsbridge Church Drive Northwest, on the
other hand, even without a city included, points
very specifically to one location.

Additionally, the occupants at an address
change from time to time, so, again, are not
necessarily as personally identifiable as numbers
or names.

Still, if one has the means, why not
anonymize them as well? Except for applications
that use street addresses for specific uses (such as
package delivery), 100 Elm Street could be

replaced by 200 Main Place without any adverse
consequences.

Addresses, then, will be anonymized using
the same table and function as people's names:

lcAddressNew = anonString(lcAddressOrig, ;
 'Addr')

Cities
Cities, again, can be handled in much the

same way as people's names and street addresses.

lcCityNew = anonString(lcCityOrig, 'City')

A sample table with a hundred sample first
names, last names, street addresses and cities,
anonstrings.dbf, is provided in the subscriber
downloads for this article.

Additional City Restrictions
In some datasets, there might be restrictions

for the City/State/Zip range. For example, I
wrote one of those 'calculate the closest store'
programs back in the 80s (back when longitudes
and latitudes were hard to figure out.) The test
data needed to be relatively appropriate; if the
user was in Atlanta, they weren't likely going to
be searching for a store in Montana.

Another example of location data needing to
be geographically relevant is when doing queries
based on location, such as population counts per
MMSA or metro regions. (My SQLite articles a
couple of years ago did just that.)

If these or similar constraints exist in your
system, you could pass an additional parameter to
the anonString() function that will serve to limit
how far afield the anonymizer will be allowed to
wander.

Putting the Data Types Together
So we've identified the types of data to

anonymize, and we've got functions to call for
each of them. We'll create a list of the fields in the
table that we want to process, and map them to
one of those data types. Then we'll simply pass
the real value to the appropriate function and get
an anonymized value in return. These three
functions are anonID(), anonString(), and
anonDate().

The mapping would look something like this:

field type

ssn id

fname fn

lname ln

addr1 addr

city city

dob date

dod date

Not. Done. Yet.
In the excitement of seeing, you may have

forgotten that there's more to this problem than
simply doing a

replace cCity with anonString(lcCityOrig, ;
 'City') all

call. We can't treat each individual row in the
table as independent from every other row.
Multiple rows may contain the same data, and we
have to anonymize all of those rows in the same
way, else the data threatens to become
meaningless.

Sample Data
A table of sample data to anonymize,

zData.dbf, is included in the subscriber
downloads. It has a variety of columns, some to
be anonymized and some to be ignored. For
demonstration sake, I've included mirror columns
for the fields to be anonymized, so that running
the anonymizing routines on the fields won't alter
the original values. The mirror columns bear the
same names, but with a trailing underscore. Thus,
the sample programs won't

replace cCity with anonString(lcCityOrig, ;
 'City')

but, rather

replace cCity_ with anonString(lcCityOrig, ;
 'City')

so that the routines can be rerun without
concern.

Handling Data In Groups
I've mentioned earlier the need to map the

fields in the table to be anonymized and the type
of data. We'll need to include one more file in the
mapping, the purpose of which is to identify a
unique key for groups of rows that should be
anonymized together.

The identification of this key varies in
complexity, depending on which field we're
processing. For example, let's look at date of birth.
We can't just throw a random date into every row,
because multiple rows may apply to the same
entity, like so:

Name DOB Benefit

Al Anxious 1/23/1978 EO7

Al Anxious 1/23/1978 ELA

Al Anxious 1/23/1978 GF12

Simply replacing every row with a random
date value would produce results like this:

Name DOB Benefit

Al Anxious 12/07/1977 EO7

Al Anxious 10/10/1977 ELA

Al Anxious 2/29/1980 GF12

which is completely wrong. We need to
substitute the same anonymized value in each of
Al Anxious's rows. However, we can't blindly
substitute the same anonymized date value for
every row that contains 1/23/1978, since Al may
share his birthday with other people. So how do
we determine just those DOBs that belong to Al?
We could use his name, but there may be others
with his name, so it's not a unique key.
Furthermore, even if the combination of
first/middle and last were guaranteed to be
unique, why use three fields if there's a simpler
way. In this example, the SSN would be unique
and simpler to use.

There are other cases, however, where we
may not be able to use a single field as the unique
key. For example, the SSN itself can't be used as
the PK when doing updates on it; we'll need to
use a different field (or set of fields) to identify all
records for a single SSN. Those of you who work
with medical data likely know that full name plus
DOB is often used as a unique identifier.

Thus, the mapping for fields to anonymize
looks like this:

Field Type PK

ssn id firstname+lastname+dtos(dob)

firstname fn ssn

lastname ln ssn

address addr firstname+lastname+ssn

city city ssn

dob date ssn

Processing the Data Table
We now have all of the pieces needed to begin

processing our table of data to be anonymized.
The we we're going to do so is spin through our
array of fields to anonymize. For each field, we'll
grab the unique keys to create the groups of
records to process. For each group (such as all of
Al Anxious's records), we'll anonymize the values
in that field by calling the appropriate function
and stuffing the return value in the table.

Here's the start of creating the field mapping
array:

dimension laFieldTypeKey[9,3]
laFieldTypeKey[1,1] = 'ssn'
laFieldTypeKey[1,2] = 'id'
laFieldTypeKey[1,3] = ;
 'firstname+lastname+dtos(dob)'
laFieldTypeKey[2,1] = 'lastname'
laFieldTypeKey[2,2] = 'ln'
laFieldTypeKey[2,3] = 'ssn'

Next, spin through this array of fields.

for li = 1 to alen(laFieldTypeKey,1)

Find all unique combinations of ssn, using the
name+dob expression as the unique key. Since
we're going to be passing a variety of field
expressions through this routine, we'll need to
provide an alias for the key expression in the
SELECT.

lcCmd = "select distinct " ;
 + laFieldTypeKey[li,3] + " as pk, " ;
 + laFieldTypeKey[li,1] + " from " ;
 + lcNaDBFtoProcess + " order by " ;
 + laFieldTypeKey[li,1] ;
 + " into cursor csrX"
&lcCmd

This cursor contains the PK and the value that
will be anonymized for that PK. Then spin
through the cursor. For each row, get anonymized
values for each value by calling the function for
that type of data. First, we'll test to see if there is a
value, as things tend to blow up when trying to
anonymize a blank value.

if empty(&laFieldTypeKey[li,1])
loop
endif

We'll need to evaluate the field expression
contained in the array. Along the way, we'll create
variables for the other parts of the expression to
update for ease of use.

luValToAnon = &laFieldTypeKey[li,1]
luValToKey = pk
luValType = laFieldTypeKey[li,2]

In this example, we'll determine which
function to call by the field name for simplicity's
sake, but this could be generalized easily enough.

case inlist(upper(laFieldTypeKey[li,1]), ;
 'SSN')

Now that we know to call the anonID()
function, we execute the first part of the magic
happens here, passing the value to anonymize
and the type of data we're passing.

luNewVal = l_anonID(luValToAnon, ;
 laFieldTypeKey[li,2])

(The function has a 'l_' prefix, since each of
the functions is contained in the main
anonymizing program.) Now equipped with the
anonymized value, it's time to update the
appropriate rows in the data table.

lcCmd = "update " + lcNaDBFtoProcess ;
 + " set " + (laFieldTypeKey[li,1]) + '_' ;
 + " = [" + allt(transform(luNewVal)) + "]" ;
 + " where " + laFieldTypeKey[li,1] + " = [" ;
 + alltrim(transform(luValToAnon)) + "]" ;
 + " and " + laFieldTypeKey[li,3] + " = [" ;
 + transform(luValToKey) + "]"
&lcCmd

Note the inclusion of an underscore to the
name of the field to update (second line of the
preceeding code snippet), and the use of brackets
as delimiters, since there are likely going to be
values with apostrophes in them.

This anonymizing program, anonAtable.prg,
is included in the subscriber downloads for this
article.

A Closer Look At the Anonymizer
Functions

I've talked about the various anonymizer
functions, anonID(), anonString() and anonDate()
in general terms, but each uses specific algorithms
to produce an anonymized value. Let's take a
closer look at each.

anonID()
The purpose behind anonID() is to return a

random string of characters that match the size

and format of the string passed in. The most
common example would be a social security
number, where '123-45-6789' passed in would
result in a random return value such as '738-49-
2361'.

In this version, the input string is examined
for the number of hyphen characters, and is then
broken into chunks. So the sample SSN would be
broken into three chunks, 123, 45, and 6789. Each
chunk would then be randomized, using a system
clock value as the seed, and the three random
chunks assembled and returned as a single string.

* determine how many chunks
liNumChunks = occurs('-',lcStrOrig)+1

* add a hyphen to the end so that every chunk
* is of the form NNNN- (a trailing hyphen)
lcStrToProcess = alltrim(lcStrOrig) + '-'

for li = 1 to liNumChunks
* break out a chunk by grabbing the leftmost
* characters until reaching a hyphen
lcThisChunk = iif('-'$lcStrToProcess, ;
 left(lcStrToProcess, ;
 at('-',lcStrToProcess)-1),;
 lcStrToProcess)
* remove this chunk from the string to process
lcStrToProcess = strtran(lcStrToProcess, ;
 lcThisChunk+'-', '')
* create a random string out of this chunk
lcNewChunk = ;
 l_rand(lcThisChunk,len(lcThisChunk))
* add the new chunk to the existing string to
* be returned
lcStrNew = lcStrNew + ;
 iif(!empty(lcStrNew),'-','') + lcNewChunk

anonString()
The purpose behind anonString() is to pass in

a string, such as a first name or a city, and get
back a different string. This function doesn't pass
back a random character string, for after all, who
wants to see test data littered with gobbledegook
like this:

First Name Last Name

KaFJd8sRlsk UjflszIIefu

Instead, we want random but valid strings.
Send in 'Steve' and get back 'Gabriel' in return.

This function takes both the original string
and the type of string (first name, last name,
address, or city) as parameters, and returns a
value from the ANONSTRINGS lookup table.
ANONSTRINGS has the following structure.

iRecno cType cData

1 FN Allan

2 FN Alvin

3 ...

3404 LN Armstrong

3405 ..

7726 ADDR All Saints Drive

7727 ..

10558 CITY Albuquerque

10559 ..

The first thing to do, then, is to determine
how many potential values we're going to have to
pick from, since that number will determine how
we calculate the random number value. (In the
data set included with this article, I've supplied
just 100 values of each type, but out in the wild,
my table includes over between 5,000 and 15,000
values of each type.)

I've actually done this in the calling program,
like so:

dimension paHowMany[4,1]
select count(*) from ANONSTRINGS where ;
 upper(allt(cType)) == 'FN' into array laX
paHowMany[1,1] = laX[1]
select count(*) from ANONSTRINGS where ;
 upper(allt(cType)) == 'LN' into array laX
paHowMany[2,1] = laX[1]
select count(*) from ANONSTRINGS where ;
 upper(allt(cType)) == 'ADDR' into array laX
paHowMany[3,1] = laX[1]
select count(*) from ANONSTRINGS where ;
 upper(allt(cType)) == 'CITY' into array laX
paHowMany[4,1] = laX[1]

So then in the function, we just grab the
appropriate value based on what type of string
was passed in.

case upper(alltrim(lcType)) = 'FN'
 liHowMany = paHowMany[1,1]
case upper(alltrim(lcType)) = 'LN'
 liHowMany = paHowMany[2,1]
case upper(alltrim(lcType)) = 'ADDR'
 liHowMany = paHowMany[3,1]
case upper(alltrim(lcType)) = 'CITY'
 liHowMany = paHowMany[4,1]

Now that we know how many potential
values are in the lookup table, we can calculate a
random record number and frame it to lie
between 1 and the number of values.

liRecnoToPull = mod(int(rand()*10000), ;
 liHowMany)

So, for example, if there were 7820 first names
in the ANONSTRINGS table, this would produce
a random value between 1 and 7820.

Armed with this number, we'll grab the value
from the lookup table.

select cData from ANONSTRINGS ;
where uppe(allt(cType))==uppe(allt(lcType)) ;
and uppe(allt(cdata))<>uppe(allt(lcStrOrig)) ;
and irecno = liRecnoToPull ;
into array laStrNew

A couple of notes about the SELECT. First, the
lookup table actually has a column, iRecno, that
contains a fake record number so that we don't
have to later rework this logic if we decided to
move to a non-record number-aware data source.

Second, the SELECT makes sure that we're
not grabbing the same value that we're passing in.
Some theorists may argue that doing actually
reduces the randomness of the function, but,
frankly, out of a set of five or ten thousand values,
that's probably not going to help someone break
the code. Meanwhile, it's handy to know in testing
that the return value will NOT be the same value
that we sent in.

anonDate()
The purpose behind this function is to

obscure dates that could be used for nefarious
purposes, such as birth and anniversary dates.
(Indeed, some folks suggest guarding your online
privacy by providing a fake date of birth so that in
the event of a breach, this piece of critical
information isn't left out there, swinging in the
wind.)

However, as mentioned, making up a
completely random birth date could well impede
the testing and use of the system the data is being
used in. Birth dates that are set into the future, or
after the date of death of the individual in
question, will likely screw up something
eventually.

The function call,

anonDate(luValToAnon)

can pass two optional parameters that
indicate the earliest and latest values that the new
random date must lie between. Without those
parameters provided, the function uses hard-
coded values of 6 months in both directions.

* provide hard-coded bounds
if pcount() < 2
luMin = 180
luMax = 180
endif

Conveniently, the parameters can either be
actual dates or can be a number of days – the data

type of the parameters will be tested in the
function.

* luMin and luMax might be dates or # of dates
if vartype(luMin)='D' and vartype(luMax)='D'
 ldDateMin = luMin
 ldDateMax = luMax
else
 ldDateMin = ldDateOrig - luMin
 ldDateMax = ldDateOrig + luMax
endif

Now that we have the bounds established,
generating new values is simple.

ldDateNew = ldDateMin ;
 + int(mod(int(rand()*10000000), ;
 ldDateMax-ldDateMin))

As a catch, sort of a belt and suspenders
device, if the new date happens to be the same as
the original date, just run the function again.

if ldDateOrig = ldDateNew
 ldDateNew = ldDateMin ;
 + int(mod(int(rand()*10000000), ;
 ldDateMax-ldDateMin))
endif

Purists may choose to turn this into a full
scale 'do while not' construct.

Enhancements
As with any program that you've worked on

for a while, this one has the potential for several
enhancements.

anonID()
An original design parameter was to handle

alphabetic strings as well as numerics, so that an
ID of the form

123ABC

could be anonymized. As I've worked with
this function, I never found the need to
anonymize an alphanumeric string, so that piece
never got written. It wouldn't be difficult, and
could conceivably be useful in other
environments, so it's the first ER on the list.

The current function has extremely limited
formatting, expecting just numbers from 0 to 9
and possibly hyphens. It's conceivable that other
separating characters could be passed in, such as
periods, underscores, or octothorpes. On the other
hand, those characters might be part of the data I
the string, so it wouldn't be wise to simply
assume they're separators, and then hard-code
traps for them.

A better way would be to send a second string
into the function that defined a character map,
much like Fox's format strings.

'9' would represent a number to be
randomized, 'A' would represent an alphabetic
character to be randomized, an X would represent
an alphanumeric character to be randomized, and
a hyphen represents a separator that is not to be
randomized. Here are some sample character
mappings:

Sample Map Meaning

999-99-9999 3 numeric, a separator, 2 numeric, a
separator, 4 numeric

AAA999 3 alphabetic, 3 numeric

XXXX-99 4 alphanumeric, a separator, 2 numeric.

The third possible enhancement might be to
pass a seed to the randomizing function, to
further add to the entropy of the data.

anonString()
For addresses, add a number and direction to

the address.
For cities, make the city closer to the target, if

needed to make subsequent calculations with the
data relevant. If the system is doing that 'closest
store to you' process, it'd be a pain to have your
carefully assembled data set of local stores to be
suddenly scattered across 20 time zones.

anonDate()
Could fine tune the range of dates, say, to be

within the same year. An insurance policy that
was taken out in one year and terminated in
another might need new dates that had the same
year as the originals.

Source Code Notes
anonStrings.dbf – master lookup table that

contains a hundred random first names, last
names, addresses, and cities.

zdata.dbf – sample table of names, addresses,
IDs, dates, and non-anonymizing data to practice
on.

anonAtable.prg – the anonymizing program
and subroutines.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Anonymizing Your Data
	ID Numbers
	Dates
	Names
	Street Addresses
	Cities
	Additional City Restrictions
	anonID()
	anonString()
	anonDate()
	anonID()
	anonString()
	anonDate()
	Author Profile

