
Automating the Filling In Of
A PDF - Reprise

Whil Hentzen

So you've got a PDF with form fields that needs to
be filled in from data in your Visual FoxPro app,
and you'd like to automate the process, inserting
your VFP data into the form and ending up with a
new copy of the PDF on disk, with the data
included

Much has been written on the subject, but sadly,
it's all WAY out of date. The most recent
discussion I've been able to find is dated 07...
while VFP hasn't changed since then, the PDF
products all have.

This article discusses two different ways to
accomplish this task. The first is using Windows
Automation with Adobe Acrobat, replete with the
licensing costs and associated issues and
overhead. The second is using the free PDF
Toolkit that merges PDF form data with the
empty PDF and produces a filled-in PDF via a call
to a simple one line batch file.

There's the story about a guy who takes his
car into the shop because it's been behaving
erratically. The mechanic listens to the sputtering
car, opens the hood, takes a screwdriver out of his
pocket, reaches in and turns a screw about a
quarter turn.

Then he turns to the owner and says, “That'll
be $75.”

The owner angrily barks, “I saw what you did
there! That didn't even take 2 minutes! Why are
you charging me $75 to turn a screw?”

The mechanic responds, “I only charged you a
quarter to turn the screw. But knowing which
screw to turn, and how far to turn it, that cost
$74.75.”

Similarly, the code to fill in a PDF is nearly
trivial, but getting the syntax to that point can be
mind-numbingly frustrating.

Before you begin
We'll assume that you've got an electronic copy of
the PDF form, without any data filled in. I'll be

using the IRS's W-9 Request for Taxpayer
Identification Number and Certification for our
examples. A copy is included in the subscriber
downloads as “w-9empty.pdf”.

Tools you'll need
This article addresses the Adobe Acrobat DC
application (www.adobe.com, for a 30 day trial
version) and the PDF Toolkit (www.pdflabs.com,
click on PDFtk Server.) We'll also use the Foxit
Reader (foxitsoftware.com) at one point.

I won't even begin to guess at what all the
Acrobat installation does to your machine, other
than load up your task bar with lots of warnings
and updater mechanisms. Eventually, though,
you'll have an option for Adobe Acrobat DC in
your Windows menu.

Downloading and installing pdftk_server-
2.02-win-setup.exe, on the other hand, results in
an 'uninstall' option in your Windows menu and a
small PDFtkServer folder in Program Files.

PDF Field Names
Under the hood, a PDF file has names for the
fields that the user enters data into. Regardless of
which method you use, you'll need to determine
those names. A PDF isn't smart enough for you to
simply throw data at it and have it be inserted in
the right places.

There are several ways you can determine the
field names. Unfortunately, the tried and true
method of reverse engineering – filling in the PDF
and then comparing, via a hex editor, the empty
and filled-in versions – doesn't work at all. The
internals of a PDF are dark and mysterious, and
while we could eventually figure it out, there are
better ways to spend the next five years. Using
our sample w-9.pdf, we'll include the word
'empty' in the filename so that we can distinguish
it from the other files we'll end up with by the end
of this article. I'm also going to assume that we're
working in our root directory, to make the
commands easy to read.

Now, about those field names.

PDF Toolkit
You can use a feature of the PDF Toolkit to output
field information from a PDF, like so:

f:\> pdftk w-9empty.pdf dump_data_fields
 output w-9empty_fields.txt

This produces a text file that lists a variety of
information about the PDF.

FieldType: Text
FieldName:
topmostSubform[0].Page1[0].f1_01_0_[0]
FieldFlags: 8388608
FieldJustification: Left

FieldType: Text
FieldName:
topmostSubform[0].Page1[0].f1_02_0_[0]
FieldFlags: 8388608
FieldJustification: Left

FieldType: Button
FieldName:
topmostSubform[0].Page1[0].FedClassification
 [0].c1_01[0]
FieldFlags: 0
FieldJustification: Left
FieldStateOption: 1
FieldStateOption: Off

(more fields)

This file, w-9empty_fields.txt, is included in
the subscriber downloads. The second line in each
section contains the gold we're looking for. Notice
that these field names may be rather obscure,
depending on what application created the PDF.
I've found that different applications (Adobe
Acrobat vs Adobe Live Cycle vs Foxit Phantom
Creator vs Amyumi) name their fields differently.
Another PDF I've worked with has an output like
so:

FieldType: Text
FieldName: F[0].P1[0].Name[0]
FieldNameAlt: Name
FieldFlags: 0
FieldJustification: Left

FieldType: Text
FieldName: F[0].P1[0].Contact[0]
FieldNameAlt: Contact
FieldFlags: 0
FieldJustification: Left

FieldType: Text
FieldName: F[0].P1[0].IDnumber[0]
FieldNameAlt: IDnumber
FieldFlags: 0
FieldJustification: Left

If you have any sway over how the PDF is
created, you may choose to make your life easier
when working with the PDF by choosing a
simpler object/naming convention. But you also
may just be stuck with what you're handed.

Acrobat Automation
A second method, more difficult to implement but
that produces results that are easier to parse, is
using Automation via Acrobat to read the PDF
and spelunk through the object model. The
program, acrobat_get_fields.prg, is included in
the source code for this issue. Let's walk through
the program.

First, assign the filename. We'll need the name
to include the word 'empty' so that we can
differentiate the empty version with the filled-in
version. You'll see why in a minute.

* acrobat_get_fields.prg

lcNaEmpty = "f:\w-9empty.pdf"

and then make sure the file is there.

if !file(lcNaEmpty)
 =messagebox('Cannot locate: '+lcNaEmpty)
 lcNaEmpty=getfile('pdf','PDF File:',
 'Open',1,'Please select a pdf file.')
 if !file(lcNaEmpty)
 =messagebox('Cannot locate: '+lcNaEmpty)
 return
 endif
endif

We could pass the name of the PDF file in as a
parameter, but typically, you're going to know
what PDF you're working with, and then send a
number of records through it, so hard-coding the
filename is generally a reasonable choice.

Next, instantiate Acrobat. I have added a
series of wait windows because it can take a little
while to get it loaded.

wait window nowait 'Working...'
AcroExchApp = CreateObject("AcroExch.App")

Next, create an object for the document, and
open the PDF.

wait window nowait 'Working..'
AcroExchAVDoc = CreateObject("AcroExch.AVDoc")
AcroExchAVDoc.Open(lcNaEmpty, "")
wait window nowait 'Working'
AcroForm = CreateObject("AFormAut.App")

And here comes the magic part. Create a
collection of the fields in the form.

AcroFields = AcroForm.Fields

Now we can spin through the collection to
determine just what the field names were.
Additionally, let's echo the value in each field
(which should be empty at this point.)

li = 0
for each Acrofield in AcroForm.Fields
 with AcroField
 li = li+1
 ? ':', li, ':', acrofield.name, ':',
 acrofield.value, ':'

 endwith
next
wait window nowait 'Done...'
return

The output, echoed to the screen, looks
something like this:

:1 : topmostSubform[0] : :
:2 : topmostSubform[0].Page1[0] : :
:3 :
topmostSubform[0].Page1[0].Address[0] : :
:4 :
topmostSubform[0].Page1[0].Address[0].f1_04_0_
[0] : :
:5 :
topmostSubform[0].Page1[0].Address[0].f1_05_0_
[0] : :

(more)

:29 : topmostSubform[0].Page1[0].f1_07_0_[0] :
:

Adobe Reader XML Export
A third method is to use Adobe Reader to export
the fields to an XML file. After opening the PDF in
Reader, select the View | Extended menu option
or click on the Extended link in the upper right
corner to open the Extended Features pane on the
right. See Figure 1.

Figure 1. The Export Data option under the Extended link.

Click Export Data and name the output file as
desired. The result will look something like this,
in part:

<?xml version="1.0" encoding="UTF-8"?>
<topmostSubform
><Page1Header
xmlns:xfa="http://www.xfa.org/schema/xfa-
data/1.0/" xfa:dataNode="dataGroup"
/><f1_01_0_
/><f1_02_0_
/><FedClassification
><f1_18_0_
/><f1_50_0_
/></FedClassification
><Exemptions
><f1_100
/><f1_101
/></Exemptions
><Address
><f1_04_0_
/><f1_05_0_
/></Address

(more)

</Col1
><Col2
xmlns:xfa="http://www.xfa.org/schema/xfa-
data/1.0/" xfa:dataNode="dataGroup"
/><PrivacyActNotice
xmlns:xfa="http://www.xfa.org/schema/xfa-
data/1.0/" xfa:dataNode="dataGroup"
/><c1_01
/></topmostSubform>

The entire XML file, named w-
9empty_data.xml, is included in the subscriber
downloads.

Foxit Export to PDF
Finally, a fourth method, even more work, but at
the same time, with results that are even easier to
use than the last, is to export a filled-in PDF to an
FDF. ('FDF' stands for 'Form Data File', and, thus,
saying 'FDF file' is sort of like saying 'baud rate'.
Anyways, what an FDF is and why it's a desirable
goal, I'll cover in a moment.)

Unfortunately, more and more applications
are shying away from the FDF file format and to
XML. At this writing, the only program I've found
that creates an FDF is the free Foxit Reader.

After opening the empty PDF in Foxit Reader,
select the Forms | Export Form Data | To Form
Data File (FDF)... menu option and name the
output file as desired. The result will look
something like this, in part:

%FDF-1.2
1 0 obj
<</FDF<</F<</Type/Filespec/F
(/F/W-9empty.pdf)/UF
(/F/W-9empty.pdf)>>/Fields[
<</T(topmostSubform[0].Page1[0].f1_01_0_[0])>>
<</T(topmostSubform[0].Page1[0].f1_02_0_[0])>>
<</T(topmostSubform[0].Page1[0].FedClassificat
ion[0].c1_01[0])/V/Off>>
<</T(topmostSubform[0].Page1[0].FedClassificat
ion[0].c1_01[1])/V/Off>>
<</T(topmostSubform[0].Page1[0].FedClassificat
ion[0].c1_01[2])/V/Off>>
<</T(topmostSubform[0].Page1[0].FedClassificat
ion[0].c1_01[3])/V/Off>>
(more)
<</T(topmostSubform[0].Page1[0].EmployerID[0].
f1_11[0])>>]>>>>
endobj
trailer
<</Root 1 0 R>>
%%EOF

The entire FDF, named w-9empty.fdf, is
included in the subscriber downloads.

So why is this a desirable goal? Because not
only do you get the field names, they're already in
the format that we'll need for solution #2, using
the PDF Toolkit. I'll come back to this in that
section of this article.

Automation with Adobe Acrobat
If you've used Automation before, the general
concept is fairly straightforward. You instantiate
an Acrobat object from within VFP, create a
document object from the empty PDF file, stuff
values into the PDF, and save the result under a
new filename. The trick, of course, is the syntax.

Let's walk through the program,
acro_fillin_pdf.prg.

We've been through first segment of this
program, as it's the same as
acrobat_get_fields.prg, described earlier. As
mentioned earlier, the name of the source PDF
includes the word 'empty', so that we can
distinguish it from the filled-in version we're
going to create in a minute.

* acro_fillin_pdf.prg

lcNaEmpty = "f:\w-9empty.pdf"
if !file(lcNaEmpty)
 =messagebox('Cannot locate: '+lcNaEmpty)
 lcNaEmpty=getfile('pdf','PDF File:',
 'Open',1,'Please select a pdf file.')
 if !file(lcNaEmpty)
 =messagebox('Cannot locate: '+lcNaEmpty)
 return
 endif
endif

wait window nowait 'Working...'
AcroExchApp = CreateObject("AcroExch.App")

wait window nowait 'Working..'
AcroExchAVDoc = CreateObject("AcroExch.AVDoc")
AcroExchAVDoc.Open(lcNaEmpty, "")
wait window nowait 'Working'
AcroForm = CreateObject("AFormAut.App")

AcroFields = AcroForm.Fields

Now we have our collection of fields. Last
time, I demonstrated how to spin through the
collection to determine just what the field names
were. Let's take that one step further and update
the fields. We'll use the field number, first, for
proof of concept, but also to help us identify
which field corresponds to which object on the
PDF form. It'll be fun, really!

li = 0
for each Acrofield in AcroForm.Fields
 with AcroField
 li = li + 1
 lcNaField = acrofield.name
 lcValue = acrofield.value
 * put the field number in the field
 acrofield.value = alltrim(str(li))
 * display the before and after values
 ? ':', li, ':', acrofield.name,
 ': old value:', lcValue,
 ': new value:', acrofield.value, ':'
 endwith
next

Finally, now that we've got new values in the
document object, let's create a new PDF. As
mentioned, the original file includes 'empty' in the

file name. We'll create a new filename that
replaces the word 'empty' with 'filled', and then
adds a timestamp to the end, as it's likely that
we'll run this multiple times, and may want to
keep track of versions produced.

AcroExchPDdoc = AcroExchAVdoc.GetPDdoc
lcNaOutput = strtran(lcNaEmpty,
 'empty','filled')
lcNaOutput = addbs(justpath(lcNaOutput))
 + juststem(lcNaOutput) + '_'
 + strtran(substr(ttoc(datetime()),12,8),
 ':','') + '.'+justext(lcNaOutput)

And now we'll actually save the file and clean
up. I've added a line that will output a note to the
screen that confirms that the save worked, instead
of requiring all the work of switching to your file
manager to see if the new PDF is there.

AcroExchPDdoc.save(1,lcNaOutput)
AcroExchAVDoc.Close(.T.)
AcroExchApp.Exit
? iif(file(lcNaOutput),'TRUE', 'nope')
wait clear
return

The result is shown in Figure 2.

Figure 2. A test run of the filled in W-9 form.

So far, so good. But users probably aren't
going to be interested in seeing their PDF form
with a bunch of random numbers in the fields.
We'll need to put the real VFP data in there. Now
that we've identified which field number maps to
which field on the form, we can add a bit of logic
to stuff the right value in the right place.

First, we'll need to grab the data from the
table as appropriate:

select ;
 name, busname, llctype, other, exempt, ;
 fatca, address, csz, accountno, requestor, ;
 ssn1, ssn2, ssn3, ein1, ein2, ;
 iid ;
 from CUST
 into array laCust

(Note that I group the fields in collections of
five, in order help keep the array index straight,
and add the unique PK at the end.)

file:///F:/W-9empty.pdf

Then, while spinning through the collection,
interrogate the field number and stuff the
appropriate value in the document.

for liRow = 1 to alen(laCust,1)

with AcroField
 li = li + 1
 lcNaField = acrofield.name
 lcValue = acrofield.value
 * put the value in the field
 do case
 case li = 26
 acrofield.value = laCust[liRow, 1]
 case li = 27
 acrofield.value = laCust[liRow, 2]
 case li = 2
 acrofield.value = laCust[liRow, 3]
 case li = 10
 acrofield.value = laCust[liRow, 4]
 case li = 11
 acrofield.value = laCust[liRow, 5]
 case li = 21
 acrofield.value = laCust[liRow, 6]
 case li = 4
 acrofield.value = laCust[liRow, 7]
 case li = 5
 acrofield.value = laCust[liRow, 8]
 case li = 29
 acrofield.value = laCust[liRow, 9]
 case li = 28
 acrofield.value = laCust[liRow, 10]
 case li = 23
 acrofield.value = laCust[liRow, 11]
 case li = 24
 acrofield.value = laCust[liRow, 12]
 case li = 25
 acrofield.value = laCust[liRow, 13]
 case li = 7
 acrofield.value = laCust[liRow, 14]
 case li = 8
 acrofield.value = laCust[liRow, 15]
 other
 acrofield.value = 'x'
 endcase
 * display the before and after values
 ? ':', li, ':', acrofield.name,
 ': old value:', lcValue,
 ': new value:', acrofield.value, ':'
endwith

After stuffing the value into the field, I still
output the field number, name, original value and
new value to the screen for verification that I got
everything lined up right.

The end result is shown in Figure 3.

Figure 3. Filling a PDF with actual values, once the field
numbers are known.

Note that it's now a trivial task to include an
identifier for the record in the fieldname, so that
multiple PDFs can be spit out while ripping
through a table.

* add the PK as part of the filename
lcNaOutput = addbs(justpath(lcNaOutput)) ;
 + juststem(lcNaOutput) ;
 + '_' + allt(str(liRow)) ;
 + '.'+justext(lcNaOutput)
AcroExchPDdoc.save(1,lcNaOutput)

next && liRow

PDF-FDF Merge with PDF Toolkit
So for whatever reason, you've decided that you
don't want to go with the Acrobat solution. That's
ok, I won't judge you. The process we'll go
through consists of one fairly simple VFP
program that has four parts.

First, we'll stuff a variable with the PDF fields
and FDF format via textmerge. Then we'll grab
the VFP data and populate the textmerge
variables with that data. Third, we'll execute
textmerge to create a temporary FDF file, usin that
VFP data and the FDF format.

Next, we'll create a text string that contains
the command that calls pdftk and passes the input
and output filenames. Finally, we'll execute the
batch file, creating the filled-in PDF file.

The full program, pdftk_fillpdf.prg, is
included in the subscriber downloads.

Stuff a textmerge variable
This is the trickiest part, because if you miss even
a single format character, the process won't work.
The format we're aiming for looks like this:

TEXT TO m.lcMergeText NOSHOW

%FDF-1.2
%âãÏÓ
1 0 obj
<</FDF <</Fields [<<
/Kids [<</Kids [<<
/V (-#lcName#-)
/T (Name[0])
>>
(more fields)
<<
/V (-#lcZip#-)
/T (Zip[0])
>>]
/T (P1[0])>>]
/T (F[0])>>]>>>>
endobj
trailer
<</Root 1 0 R>>
%%EOF

ENDTEXT
You'll notice that the construct
<<
/V (-#Name#-)
/T (Name[0])
>>

will be repeated for each field. The string in
parens following the /V is the name of the VFP
variable that contains the data to be stuffed into
the field, and the string in parens following the /T
is the name of the PDF field.

Looking back at our four solutions to find the
fieldnames in a PDF, you'll see that the FDF
produced by Foxit Reader is pretty darn close to
what we're going to textmerge, so that's why I
mentioned it.

Here's a hint: Before you produce an FDF,
stuff the empty PDF with data placeholders, and
crank out the FDF so that it contains data values. I
use strings like 'AAAAAAAAAA' and
'BBBBBBBB' because the resulting FDF will then
have very obvious markers for each field.

Grab the VFP data
The next step is to assign your VFP data to the
variables in the FDF section.

select ;
 name, busname, llctype, other, exempt, ;
 fatca, address, csz, accountno, requestor, ;
 ssn1, ssn2, ssn3, ein1, ein2, ;
 iid ;
 from CUST ;
 into array laCust

for liRow = 1 to alen(laCust,1)

m.lcName = laCust[liRow,1]

(more fields)

m.lcEin2 = lcCust[laCust,15]

Create a temporary FDF file
We're going to merge the VFP data with the FDF
format via textmerge, and create a file on disk.
From there, we'll use the PDF Toolkit to merge the
PDF and FDF to create the filled-in form.

m.lcFolder = sys(2003)
m.lcFDFFile = textmerge(m.lcMergeText, .T.,
 "-#", "#-")
strtofile(m.lcFDFFile,
 m.lcFolder + "w-9source.fdf")

Assemble a batch file command
Your specific needs may vary, say, if you're
creating a series of PDFs, but essentially we're
creating a command that calls pdftk, passes the
filenames of the empty PDF, the temporary FDF,
and the desired filled-in PDF.

m.lcBlankForm = addbs(sys(5) + sys(2003))
 + "w-9empty.pdf"
m.lcFilledForm = m.lcFolder + "w-9filled_"
 + allt(str(laCust[liRow,16]))
 + ".pdf"
m.lcCommand = [pdftk "] + m.lcBlankForm ;
 + [" fill_form "] + m.lcFolder ;
 + [w-9source.fdf" output "] ;

 + m.lcFilledForm ;
 + [" flatten drop_xfa]

The last parameters take care of some
housekeeping. The flatten option will make form
field data a permanent part of the page. The
drop_xfa option removes conflicts between older
PDF formats and newer PDF technology called
XFA.

Run the batch file
Since the resulting command string may extend
pass the 240 character limit for RUN commands,
we'll store it to a variable and execute indirectly.

m.lcBatchFile = m.lcFolder + "fillpdf.bat"
STRTOFILE(m.lcCommand, m.lcBatchFile)
RUN "&lcBatchFile"

Voila! The filled in PDF, 'w-
9filled_NNNNNN.pdf', is now on disk.

Source Code Notes
The files for this article include the following:

w-9empty.pdf - Request for Taxpayer
Identification Number and Certification.

w-9empty_fields.txt – output of PDF Toolkit
describing the fields in the w-9empty.pdf.

acrobat_get_fields.prg – parses through a PDF
and displays a list of fields on the VFP desktop.

w-9empty_data.xml – output of Acrobat
Reader describing the fields in the w-9empty.pdf,
in XML format.

w-9empty.fdf – FDF output of Foxit Reader.
acro_fillin_pdf.prg – fills data from a VFP

table into an empty PDF and saves the result in a
new file.

pdftk_fillpdf.prg – VFP program to create and
merge FDF formatted data with an empty PDF
and save the result in a new file.

pdftk_fillpdf.bat – temporary batch file
created by pdftk_fillpdf.prg.

And a special thanks to...
Tracy Holzer for providing the head start on the
Adobe Acrobat syntax and Frank Cazabon on the
PDF Toolkit concepts.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Automating the Filling In Of A PDF - Reprise
	PDF Toolkit
	Acrobat Automation
	Adobe Reader XML Export
	Foxit Export to PDF
	Stuff a textmerge variable
	Grab the VFP data
	Create a temporary FDF file
	Assemble a batch file command
	Run the batch file
	Author Profile

