
“We Want To Go To SQL”
Whil Hentzen

Never before in the history of Fox has there been
such a disparity in the sophistication of deployed
applications. While there are plenty of extremely
high end systems in place now, built on complex
frameworks, processing data over large networks,
it's still not unusual to find companies running
their operations with a folder full of FXPs that
consist of @SAY/@GET commands and the
occasional READ thrown in there for good
measure.

Thus, while the average reader of this magazine
has been using SQL commands and accessing
SQL back ends for two decades, that's not a
universal situation.

I get a call probably once a month with these
specific words: "We want to go to SQL." This isn't
as clear cut a request as it seems, though, and is
full of potential pitfalls.

The purpose of this article is to help you address,
strategically and technically, their request to 'go to
SQL', and to help you help them open their
pocketbooks.

Nearly 20 years ago I merged a dozen in-
house Fox 1.x and 2.x systems with three MS-SQL
applications, porting all of the Fox data into a
fourth, for a small multinational that ran all of
their sales, orders, inventory, invoices, marketing
and collections operations. If you count back on
your fingers, yes, you've got it right, this was a
Y2K project as well, so it won't shock you when I
tell you that there were a couple of late nights on
that gig. We shipped on time, and in fact, they
were able to take their holiday shutdown as
scheduled.

I've been dealing with projects like that (sans
the Y2K requirements) ever since.

Unfortunately, that project was somewhat of
an anomaly. They knew they were facing a
rewrite, and had prepared for it. Most folks
people expect a magic bullet (as they do with
everything) that will take their app, crafted over
decades, replete with all sorts of custom
constructs, and move to a SQL backend over a
weekend, because they heard a MSFT

presentation 20 years ago promising that by using
VFP's new-fangled “Views", you could "flip a
switch and 'voila, SQL!'" Sure, they'll admit that
they didn't really quite understand the 'views'
part, but still, you can do that, right?

They're uniformly disappointed to find this is
not true. And disappointed people don't spend
money (with you) as readily as optimistic people.

What does 'go to SQL' mean?
Before we get into the nitty gritty, let's take a step
back and look at the bigger picture.

We're pretty smart folks, that's why we're
developing software instead of digging ditches or
making sure the french fry machine is clean. But
this also means that we have a tendency to jump
ahead in the conversation, to move past the
mundane parts and go straight to the interesting
stuff. So when someone says, "We want to go to
SQL", well, we're liable to assume that they mean
"A SQL database backend."

But this isn't necessarily the case.
I've run into more than one situation where

their desire to 'go to SQL' actually meant that they
simply wanted to convert their XBASE-style data
access to SQL commands, replacing

append blank
replace name with m.name

or

append blank
gather memo memvar

with

insert into MyTable (name) values (m.name)

Of course, this process is part of the the larger
process of moving from DBFs to a SQL backend,
but again, let's just make sure.

So, just what do they mean when they
say "go to SQL"?

You've likely run into folks whose grasp of
technology is a little suspect. They've been
entrenched in the @SAY/@GET world for so long
that just what “SQL” is isn't exactly clear. "Is it a

floor wax or a dessert topping? It's both!" They
just know they want “SQL”, because all the other
cool kids on the golf course are using it, and they
don't want to be left out, not now in 2016.

This statement always reminds of the cartoon
where the PHB tells Dilbert "We should build an
SQL database." Dilbert thinks, "Does he
understand what he said or was it something he
saw in a magazine?" So he asks, "What color do
you want that datbase?" and the PHB, in his all-
knowing manner, answers, "I think mauve has the
most RAM."

Do they understand what they're
saying?

First, in email, it's tough to decipher. Are they
thinking, "Ess-Que-Elle" or "SEE-kwell"? I know,
technically 'SQL' can be pronounced either way,
and thus their intent can't be decisively
determined by how they pronounce it. Yet, for
some reason, I've generally heard the first
pronunciation, S-Q-L, used when referring to the
data manipulation language, while 'sequel' is
more often used as shorthand for a database
product (most likely Microsoft SQL Server, but
possibly a competitor, such as MySQL or
PostgreSQL.)

Interestingly enough, peers of mine have run
into the exact opposite interpretations. Go figure!

In the first situation, I'd be inclined to think
they mean converting their code to use SQL
constructs such as SELECT, INSERT UPDATE
and DELETE. Obviously, then, the second
situation is that they have in mind the conversion
of their data from DBFs to another backend, along
with the necessary code modifications.

Given these two meanings, your next job is to
determine which they mean. This can be a
challenge, they may not even understand
themselves that there is a difference.

Thus, your very first task is ask is to confirm
what they mean. Difficulty arises when they don't
know what they mean, when they're basically
parroting terms they read about in a magazine
(yes, it really does happen) or heard from one of
their buddies. "Yeah, we moved to SQL this
spring." (Puffs out chest a bit.) "It's so much more
robust, and tolerance to faults has gone up
substantially."

I've had conversations with several potential
customers who, even after repeated probing, were
unable to specify whether they meant a new
backend or simply rearchitecting their existing
code. Kind of like overhearing a couple of teens
talk about sex, if they haven't actually done it
themselves, they're simply repeating buzzwords
from an ethereal realm.

How to determine what they mean?
Since changing to a SQL-based backend includes
rearchitecting the code to use SQL instead of
record based logic, addressing the issues specific
to the backend acquisition is the way to determine
which they mean. Direct technical questions,
however, may not do you any good - asking
which database they are thinking of may result
in a blank stare and a response of "I just told you –
SQL!"

Asking about their budget for licenses, for
example, is a great way to find out if they
understand what they're talking about. If they
give you the deer in the headlights look, they
probably don't have a database product in mind.

Another key question to ask is who will act as
their DBA is another tactic to unearth information
about their intentions and goals. Folks who are
purposefully and knowledgeably going to a
backend database will often have an idea of how
it's going to be managed.

Why is this difficult?
Regardless of their intent, they may well be under
the impression that this is simply a matter of
exchanging one set of commands for another, as
described earlier.

Not so much.
It's a huge job, fraught with peril. There is no

single cookbook to deal with constructs like this:

append blank
gather memvar a,b,c,d,e,f
copy to temp2
scatter memv
append blank
copy to TEMP3
do while !(expression)
 something
 else
 something
enddo
select TEMP1
gather memv c,d,e
skip

and Fox 1.x and 2.x (and a lot of VFP apps)
are based on code like this.

Even worse, "back in the day", nobody ever
heard of n-tier, so the idea of segregating data
processing logic from the user interface was never
done. Never. So we had code that looked like this:

append blank
gather memvar a,b,c,d,e,f
a=a+b
@say a
copy to temp2
scatter memv
b=b+c
@say b
append blank
copy to TEMP3
do while !(expression)

 something
 else
 something
enddo
select TEMP1
gather memv c,d,e
c=c+d
@say c
skip

And... notice the complete lack of comments
in that code. Look familiar? Right!

So they better have a really good reason for
doing so.

What are their reasons?
Now that we have this cleared up, realize that one
is a subset of the other. To go to a backend, you'll
need to cleave the intermingled UI and data
access first, and then, once you have data access
converted to SQL commands, incorporate those
those commands into backend connections.

This is a lot of work. A LOT of work, as
systems that were working just fine are now torn
apart, with parts all asunder. There better be good
reasons for all this work and risk. And the peril.
Did I mention the peril?

To be sure, there are a number of very good
reasons to undertake this chore.

The first that comes to mind is the size limit of
Visual FoxPro tables. A single file (DBF, FPT, or
CDX) can't be larger than 2 gigabytes, due to
internal architecture of VFP. Database servers
have limits that boggle the mind, perhaps even
more than those 2 GB limits boggled twenty years
ago.

So if their system is running into problems
with size limits, or they've had to implement one
workaround after another to avoid said problems,
an investment in moving to a new backend could
be very well worth it.

A second reason oft cited is security. VFP
tables are simply files on disk. If you've got an
ODBC driver, or the appropriate VFP-enabled
application (like Word or Excel), you can open up
one of those VFP tables and cause all sorts of
mayhem. Worse, anyone else can too.

A related reason is the reliability of the VFP
data structure. While VFP goes to great lengths to
protect the structure of the DBF file system, a
table (or its related index and/or memo files) can
be corrupted, causing data loss and much
anguish. Database servers, because of the way
they're built and maintained, are inherently more
reliable. Not perfect, mind you, but a properly
maintained SQL backend will never generate the
dreaded “Not a table” error message ever again.

Just because these are good reasons for
someone doesn't mean that they're good reasons

for them. Don't assume, ask *them* why. And
then, what's the effort worth to them?

Preparing for the carnage
As mentioned earlier, there is no cookbook for
converting 1/2.x code. Between the intermingling
of UI and data access, and the lack of direct
mapping between xbase and SQL constructs,
there are simply too many variables.

That said, a potential customer isn't going to
be happy with “We have no idea” when they ask
how much it's going to cost to do the conversion.

Regardless of whether the process entails
"simply" converting to SELECTS and INSERTS, or
rewriting every file interaction via SPT or views is
a little irrelevant; they're close enough for our
purposes now. In both cases, you're going to need
to touch every instance in the xBASE collection of
SKIP, GOTO, REPLACE and GATHER MEMVAR
style commands. It can be a daunting task, the
difficulty of which is not easily communicated to
the people writing the check or allocating the
hours.

To get a handle on the situation, and to
educate your customer, I've found it useful to do a
size and scope of the work involved. The next
article will provide a quick rubric for doing so,
plus a simple utility for digging up and
organizing the necessary data. Let me emphasize
that the purpose of this tool is a rough size and
scope - not an exact analysis. The goal is to move
from 'I have no idea' to an estimate within maybe
a factor of 2 or 3.

Stay tuned!

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	“We Want To Go To SQL”
	What does 'go to SQL' mean?
	So, just what do they mean when they say "go to SQL"?
	Do they understand what they're saying?
	How to determine what they mean?
	Why is this difficult?
	What are their reasons?
	Preparing for the carnage
	Author Profile

