
Parsing Obnoxious Text
Files

Whil Hentzen

As we are increasingly asked to integrate our VFP
apps with others systems, we can run into some
obnoxious situations. One of those is a text file
that while technically follows the specified
format, still contains garbage that makes parsing
harder.

Calvin Hsia demonstrated the improvements
in VFP's amazing sting handling functions at one
of the last Microsoft DevCons. "Want to see me
parse 100,000 lines of text?” He hits a key, looks
up, and asks, “Want to see me do it again?

Speed isn't all it takes, though.
Data dumps from some database that contain

freeform text fields are one such beast. Lately I've
been regularly receiving comma delimited dump
that had additional carriage return/line feed
combinations in the free form text fields, and it
got me to scratching my noggin for a bit.

A normal comma delimited file looks like
Figure 1.

Figure 1. A regular comma delimited file.

A comma delimited file with garbage in the
text fields looks like Figure 2.

Figure 2. A comma delimited file with CR/LF characters in a
delimited text field.

Normally, you import a command delimited
file with a standard

append from <filename> delimited

command, which results in a DBF that looks
like Figure 3.

Figure 3. A regular delimited file.

Nice and clean. The hardest work is making
sure the fields in the text file match up with the
fields in your DBF, as all too often, the provider of
the data dump wasn't meticulous about defining
the layout.

Importing the file with the extra garbage,
however, produces more garbage, as shown in
Figure 4.

Figure 4. An imported file with CR/LF.

Initial inclination was to replace each CRLF
with a diff char, but it wouldn't work - the 'good'
CR/LF at the end of each legitimate line would
also be identified and replaced.

I considered trying to count fields, but that
seemed prone to error.

Then I realized that the errant CR/LF were
always in strings surrounded by quotes. So I
walked through the record a char at a time,
counting the number of quotes, and replaced the
CR or LF with a space ONLY if the # of quotes
that had been encountered was odd (and thus in
the middle of a field.)

* parse.prg
* parse order file, remove all CR or LF
* inside double quotes

local x, lil, i, thisChar, numDQ

x=filetostr('garbage.csv')
lil = len(x)
numDQ = 0
for i = 1 to lil
 * update wait window once in a while
 if mod(i,10000) = 0
 wait window nowait lil-i
 endif

 thisChar = substr(x,i,1)
 if asc(thisChar) = 34 && Double Quote
 * determine if we're inside a string
 if numDQ = 0
 * we are now inside the DQ string
 numDQ = 1
 else
 * we are finishing up with a DQ string
 numDQ = 0
 endif
 else
 * if numDQ = 1, we are inside a string,
 * so check if this char is 10/13,
 * if we're inside,
 * replace with a space (32)
 * if we're not inside, do nothing
 if numDQ=1
 if asc(thisChar) = 10 ;
 or asc(thisChar) = 13
 x=stuff(x,i,1,chr(32))
 else
 * this char isn't a CR or LF, so
 * don't do anything
 endif
 else
 * not inside, so
 * don't do anything
 endif
 endif
next
strtofile(x,'garbageNOT.csv')

If the CR/LF characters need to be
maintained, they could be replaced by character
strings more easily identifiable than simple
spaces. For example, the “
” string would be
logical and easy to find. Once a field containing
CR/LF placeholders was imported into a DBF's
memo field, the
 strings could be replaced
with the original CR/LF characters.

Author Profile
Whil Hentzen is an independent software developer
based in Milwaukee, Wisconsin (as opposed to
Milwaukee, Minnesota, as many people think.) His
writing has killed many trees over the years, but none
since 2007. He has realized he really sort of misses it.
You can reach him at whil@whilhentzen.com

mailto:whil@whilhentzen.com

	Parsing Obnoxious Text Files
	Author Profile

